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PREFACE

No self-respecting publishing house will permit a book to appear
in print without a title page or without a preface. Most readers
agree on the desirability of a title page, but with almost equal una-
nimity they find a preface superfluous and uninteresting. Good
prefaces are rarely written, but it has been done, notably by George
Bernard Shaw, Oliver Heaviside, and Henri Bouasse. The incom-
parable G.B.S. is delightfully entertaining and at the same time full
of wisdom; the other two are entertaining but have axes to grind.
Oliver Heaviside assails the “Cambridge mathematicians” of whom
he reluctantly admits that “even they are human’’; Henri Bouasse
charges with Gallic wit into the members of the French Academy
of Sciences, who have more starch in their shirts than is pleasing to
that author. However, the writing of those witty prefaces did them
little good because they lacked that simple knowledge of the funda-
mental laws of mechanics that even Sancho Panza possessed. It is
recorded that Sancho, when he saw his famous master charge into
the windmills, muttered in his beard something about relative motion
and Newton’s third law (as carefully explained on page 175 and on
page 297 of this textbook). Sancho was right: the windmills hit his
master just as hard as he hit them, and of course the same thing
happened to Heaviside and Bouasse. The gentlemen with the
starched shirts never elected Bouasse to be a member of their famous
academy, and as to Heaviside and the mathematicians, the ‘ Heaviside
Calculus” of a decade ago has become the ‘“Theory of Laplace’s
Transforms,” and the “Heaviside Layer” has acquired the scientific
name of “Ionosphere.” Thus an author who aspires to wear well-
laundered shirts should be very careful about what he writes in the
preface to his book and should stick to innocuous and dry facts, such
as, for instance, that the reader has now before him a textbook designed
for a two-semester course for sophomores or juniors in a regular four-
year engineering curriculum. The author further believes that it
will do no harm to suggest that the book also can be adapted to a
simpler, single-semester course by the omission of Chaps. IV, V, VII,
VIII, XI, XVI, and XVIL

He has done his best to write carefully and has placed no deliberate

v



vi PREFACE

errors in the book, but he has lived long enough to be quite familiar
with his own imperfections. He therefore asks his readers to be
indulgent and assures them that letters from them calling attention
to errors or containing suggestions for improvements of the book will
be gratefully received and very much appreciated.

J. P. DExN HarTog

CAMBRIDGE, Mass.
May, 1948
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CHAPTER 1
DISCRETE COPLANAR FORCES

1. Introduction. Mechanics is usually subdivided into three parts:
statics, kinematics, and dynamics. Statics deals with the distribution
of forces in bodies at rest; kinematics describes the motions of bodies
and mechanisms without inquiring into the forces or other causes of
those motions; finally, dynamies studies the motions as they are
caused by the forces acting.

A problem in statics, for example, is the question of the compressive
force in the boom of the crane of Fig. 17 (page 24) caused by a load of
a given magnitude. Other, more complicated problems deal with the
forces in the various bars or members of a truss (Fig. 61, page 54) or
in the various cables of a suspension bridge (Fig. 67, page 63). Statics,
therefore, is of primary importance to the civil engineer and architect,
but it also finds many applications in mechanical engineering, for
example, in the determination of the tensions in the ropes of pulleys
(Fig. 15, page 21), the force relations in screw jacks and levers of
various kinds, and in many other pieces of simple apparatus that
enter into the construction of a complicated machine.

Statics is the oldest of the engineering sciences. Its first theories
are due to Archimedes (250 B.c.), who found the laws of equilibrium
of levers and the law of buoyancy. The science of statics as it is
known today, however, started about A.p. 1600 with the formulation
of the parallelogram of forces by Simon Stevin.

Kinematics deals with motion without reference to its cause and is,
therefore, practically a branch of geometry. It is of importance to the
mechanical engineer in answering questions such as the relation
between the piston speed and the crankshaft speed in an engine, or,
in general, the relation between the speed of any two elements in
complicated “kinematical” machines used for the high-speed auto-
matic manufacture of razor blades, shoes, or zippers. Another
example appears in the design of a quick-return mechanism (Fig.
146, page 168) such as is used in a shaper, where the cutting tool does
useful work in one direction only and where it is of practical importance
to waste as little time as possible in the return stroke. The design of
gears and cams is almost entirely a problem in kinematics.

1



2 DISCRETE COPLANAR FORCES

Historically, one of the first applications of the science was “James
Watt’s parallelogram,” whereby the rotating motion of the flywheel
of the first steam engine was linked to the rectilinear motion of the
piston by means of a mechanism of bars (Fig. 177, page 203). Watt
found it necessary to do this because the machine tools of his day were
so crude that he could not adopt the now familiar crosshead-guide con-
struction, which is “kinematically” much simpler.

From this it is seen that kinematics is primarily a subject for the
mechanical engineer. The civil engineer encounters it as well but to a
lesser extent, for instance in connection with the design of drawbridges,
sometimes also called ‘“‘bascule” bridges, where the bridge deck is
turned up about a hinge and is held close to static equilibrium in all
positions by a large counterweight (Problem 44, page 353). It is
sometimes of practical importance to make the motion of this counter-
weight much smaller than the motion of the tip of the bridge deck,
and the design of a mechanism to accomplish this is a typical problem
in kinematics.

Finally, dynamics considers the motions (or rather, their accelera-
tions) as they are influenced by forces. The subject started with
Galileo and Newton, three centuries ago, with applications principally
to astronomy. Engineers hardly used the new science before 1880
because the machines in use up to that time ran so slowly that their
forces could be calculated with sufficient accuracy by the principles of
statics. Tiwo practical dynamical devices used before 1880 are Watt’s
flyball engine governor and the escape mechanism of clocks. These
could be and were put to satisfactory operation without much benefit
of dynamical theory. Shortly after 1880 the steam turbine, the
internal-combustion engine, and the electric motor caused such
increases in speed that more and more questions appeared for which
only dynamics could provide an answer, until at the present time the
large majority of technical problems confronting the mechanical or
aeronautical engineer are in this category. Even the civil engineer,
building stationary structures, cannot altogether remain aloof from
dynamics, as was demonstrated one sad day in 1940 when the great
suspension bridge near Tacoma, Washington, got into a violent flutter,
broke to pieces, and fell into the water—a purely dynamical failure.
The design of earthquake-resistant buildings requires a knowledge of
dynamics by the civil engineer. But these are exceptions to the
general rule, and it is mainly the mechanical engineer who has to deal
with dynamical questions, such as the stability of governing systems,
the smooth, non-vibrating operation of turbines, the balancing of
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internal-combustion engines, the application of gyroscopes to a wide
variety of instruments, and a host of other problems.

2. Forces. Statics is the science of equilibrium of bodies subjected
to the action of forces. It is appropriate, therefore, to be clear about
what we mean by the words “equilibrium” and ‘“force.” A body is
said to be in equilibrium when it does not move.

“Force” is defined as that which (a) pushes or pulls by direct
mechanical contact, or (b) is the “force of gravity,” otherwise called
“weight,” and other similar “field” forces, such as are caused by elec-
tric or magnetic attraction.

We note that this definition excludes ““inertia’’ force, ‘centrifugal”’
force, ““centripetal” force, or other ‘forces” with special names that
appear in the printed literature.

The most obvious example of a pull or a push on a body or machine
is when a stretched rope or a compressed strut is seen to be attached to
the body. When a book rests on the table or an engine sits on its
foundation, there is a push force, pushing up from the table on the
book and down from the book on the table. Less obvious cases of
mechanical contact forces occur when a fluid or gas is in the picture.
There is a push-force between the hull of a ship and the surrounding
water, and similarly there is such a force between an airplane wing in
flight and the surrounding air.

If there is any doubt as to whether there is a mechanical contact
force between two bodies, we may imagine them to be separated by a
small distance and a small mechanical spring to be inserted between
them, with the ends of the spring attached to the bodies. If this
spring were to be elongated or shortened in our imaginary experiment,
there would be a direct contact force. All forces that we will deal
with in mechanics are direct contact forces with the exception of
gravity (and of electric and magnetic forces). The mental experi-
ment of the inserted spring fails with gravity. Imagine a body at
rest suspended from above by a string. According to our definition
there are two forces acting on the body: an upward one from the
stretched string, and a downward one from gravity. We can mentally
cut the string and insert a spring between the two pieces. This spring
will be stretched by the pull in the string. We cannot imagine an
operation whereby we ‘‘cut” the force of gravity between the body
and the earth and patch it up again by a spring.

The unit of force used in engineering is the pound, which is the
weight or gravity force of a standard piece of platinum at a specific
location on earth., The weight of this standard piece varies slightly
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from place to place, being about 0.5 per cent greater near the North
Pole than at the equator. This difference is too small to be considered
for practical calculations in engineering statics, but it is sufficiently
important for some effects in physics. (A method for exploring for oil
deposits is based on these very slight variations in gravity from place
to place.)

For the practical measurement of force, springs are often used.
In a spring the elongation (or compression) is definitely related to the
force on it so that a spring can be calibrated against the standard
pound and then becomes a ““dynamometer” or force meter.

A force is characterized not only by its magnitude but also by the
direction in space in which it acts; it is a “vector” quantity, and not
a ‘“‘scalar’ quantity. The line along which the force acts is called its
“line of action.” Thus, in order to specify a force completely, we
have to specify its line of action and its magnitude. By making this
magnitude positive or negative, we determine the direction of the
force along the line of action.

A very important property of forces is expressed by the first axiom
of statics, also known as Newton’s third law (page 175), which states
that action equals reaction. Contact forces are always exerted by
one body on another body, and the axiom states that the force by the
first body on the second one is equal and opposite to the force by
the second body on the first one. For example, the push down on the
table by a book is equal to the push up on the book by the table.
Thinking about our imaginary experiment of inserting a thin “dyna-
mometer”’ spring between the book and the table, the proposition looks
to be quite obvious: there is only one force in the spring. Newton’s
third law, however, states that it is true not only for contact forces
but also for gravity (and similar) forces. The earth pulls down on a
flying airplane with a force equal to the one with which the airplane
pulls up on the earth. This is less obvious, and in fact the proposition
is of the nature of an axiom that cannot be proved by logical deduction
from previous knowledge. It appeals to the intuition, and the logical
deductions made from it (the entire theory of statics) conform well
with experiment.

Another proposition about forces, which appeals to our intuition
but which cannot be proved by logic, is the second axiom of statics,
or the principle of transmissibility :

The state of equilibrium of a body is not changed when the point
of action of a force is displaced to another point on its line of action.
This means in practice that a force can be shifted along its own line
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without changing the state of equilibrium of a body. For ropes or
struts in contact with the body, the proposition looks obvious; it
should make no difference whether we pull on a short piece of rope
close to the body or at the end of a long rope far away, provided that
the short rope coincides in space with a piece of the longer one. For
gravity forces the proposition is not so obvious.

It is noted that the equivalence of two forces acting at different
points along their own line extends only to the state of equilibrium of
a body, not to other properties. For instance, the stress in the body
is definitely changed by the location of the point of action. Imagine a
bar of considerable weight located vertically in space. Let the bar in

Fia. 1. The parallelogram of forces.

case a be supported by a rope from the top and in case b, by a bearing
at the bottom. The supporting force in both cases equals the weight
and is directed upward along the bar; in case a it acts at the top, and
in case b, at the bottom. By the axiom this should not make any
difference in the state of equilibrium of the body, but in case a the
bar is in tension, and in case b, in compression.

3. Parallelogram of Forces. The statements of action equals
reaction and of transmissibility are not the only axioms about forces
which are made. The third axiom in statics is that of the parallelo-
gram of forces:

If on a body two forces are acting, whose lines of action intersect,
then the equilibrium of the body is not changed by replacing these two
forces by a single force whose vector is the diagonal of the parallelo-
gram constructed on the two original forces.

This is illustrated in Fig. 1. The two forces, F, and Fs, have lines
of action intersecting at O; they are said to be concurrent forces, to dis-
tinguish them from forces of which the lines of action do not intersect.
The single force R, called the resultant, is equivalent to the combined
action of the two forces, F; and Fo. Although this construction is now
familiar to almost everyone, it is emphasized that it is an axiom, not
provable by logic from known facts. It is based on experiment only,
and the ancient Greeks and Romans did not know it, although Archi-
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medes was familiar with the equilibrium of levers. The statement is
about 350 years old and was formulated less than a century before
the great days of Newton.

Many simple experiments can be devised to verify the axiom of the
parallelogram of forces. They all employ for their interpretation two
more statements which are sometimes also called axioms but which
are so fundamental that they hardly deserve the honor. They are

Fourth axiom : A body in equilibrium remains in equilibrium when
no forces are acting on it.

Fifth axiom : Two forces having the same line of action and having
equal and opposite magnitudes cancel each other.

For an experimental verification of the parallelogram law, arrange
the apparatus of Fig. 2, consisting of two freely rotating frictionless

Fia. 2. Experimental verification of the parallelogram of forces.

pulleys, P; and P, of which the axles are rigidly mounted, and a com-
pletely flexible string or rope strung over them. Three different
weights, Wy, W,, and W3 are hung on the string, and if the string is so
long that the weights are kept clear of the pulleys, they will find a
position of equilibrium, as the experiment shows. We observe the
geometry of this position and reason by means of the five axioms. In
this reasoning we employ a device, called isolation of the body, that
is used in practically every problem in mechanics and that is of utmost
importance. The first ‘“body”’ we ‘“‘isolate’’ consists of the weight
W1 and a short piece of its vertical string attached to it. The ““iso-
lation” is performed by making an imaginary cut in the string just
above W, and by considering only what is below that cut. We observe
from the experiment that W, is in equilibrium and notice that two
forces are acting on it: the pull of the string up and the weight W,
down. The lines of action of the two forces are the same so that by
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the fourth and fifth axioms combined, we deduce that the force or
tension in the string is equal to the weight W, Next we look at or
“jsolate” the pulley P;. The tensions in the two sections of string
over a frictionless pulley are the same so that the tension in the string
between P; and A is still W;. This is not obvious, and the proof of
it will be given much later, on page 21.

By entirely similar reasoning we conclude from the fourth and
fifth axioms that the tension in the string between P, and 4 is W, and
that the tension in the vertical piece of string between A and W; is
equal to Ws.

Now we once more isolate a body, and choose for it the knot A and
three short pieces of string emanating from it. This body is in equilib-
rium by experiment, and we notice that there are three forces acting
on it, the string tensions W;, W,, and W3, whose lines of action inter-
sect at A. Now by the third axiom of the parallelogram of forces, the
tensions F; and F; of Fig. 2 (which we have seen are equal to W, and
W) add up to the resultant E. By the fourth and fifth axioms, it is
concluded that R must be equal (and opposite) to Ws. By hanging
various weights on the strings we can form parallelograms of all sorts
of shapes and so verify the third axiom experimentally.

For example, if Wy = W, = 11b and W3 = v/2 = 1.41 Ib, then
the angles of the parallelogram will be 45 and 90 deg.

In constructing the parallelogram of forces, not all the lines have
to be drawn in the figure. In Fig. 1 it is seen that the distance F,R
is equal (and parallel) to OF;. In order to find the resultant OR in
Fig. 1, it suffices to lay off the force OF,, and then starting at the end
point F, to lay off the other force FoR = OF;. The resultant OR is
then the closing line of the triangle OF.R. The lines OF, and F,R
do not necessarily have to be drawn. The construction then is called
the triangle of forces.

If more than two forces are to be added together, this triangle
construction leads to a much simpler figure than the parallelogram
construction.

In Fig. 3a there are three forces, 0,F1, O:F 3, and OsF3, whose lines
of action lie in one plane but do not meet in one point. We want to
find the resultant of these three forces. To do this we first slide F,
and F, along their lines of action to give them the common origin O,
so that O,P = 0,F, and 0.0 = OsF,. Then we construct the parallel-
ogram, of which O,S is the diagonal, and therefore 0,8 is the resultant
of OyF, and O.F,. To add the third force OF; to this, we have to
slide both 0,8 and O;F; along their respective lines of action to give
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them the common origin Os so that O;T = 0,F; and OsRs = O,S.
Now complete the second parallelogram with OsRis as diagonal.
Then OsR,43 is the resultant of the three forces.

Just below, in Fig. 3b, the construction has been repeated in the
triangle form. We start at O and lay off one force OF; then from the
end point F, we lay off the second force F1F'» = O.F;. 'The closing line
of that triangle gives the intermediate result R;.: the resultant of the
first two forces. Finally we lay off Fo.F; = OsF; starting at the end

77

|

I's) R123
(b)

F1a. 3. The compounding of three forces.

point F of the diagram. The closing line OF ; is the desired resultant
Ryss. It is seen that every line of Fig. 3b is parallel to a corresponding
line in Fig. 3a and that Fig. 3b is a condensed and simplified version of
Fig. 3a. However, Fig. 3a not only gives the magnitude and direc-
tion of the resultant R,.;, but also gives the correct location of its
line of action in relation to the three individual forces, whereas in
Fig. 3b this location is not given—the resultant Rj.; is displaced
parallel with respect to its true location in Fig. 3a. Later (page 20)
we will see how the true location of R;z; can be found as well.

The figure (3b) is known as the polygon of forces, and its usefulness
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is not limited to three forces but can be extended to any number of
forces. The greater the number of forces, the more obvious becomes
the simplification of the polygon figure (3b) as compared to the paral-
lelogram figure (3a).

Problems 1 fo 8.

4. Cartesian Components. Two intersecting or concurrent forces
can be added to form a single resultant by the parallelogram con-
struction. By the reverse procedure any force
can be resolved into two components in arbi-
trary directions. In order to determine those
components the directions must be specified.
For instance, the force F of Fig. 4 can be re-
solved into the horizontal and vertical compo-
nents H and V as shown. But the force F can
just as well be resolved into the components P
and Q. For any two chosen directions the force
has its appropriate components, and since we
can choose an infinite number of directions, the
resolution of a single force into two compo-
nents can be accomplished in an infinite num- , -, , force F
ber of ways. can be resolved into two

For many problems it is of practical advan- ?:::f:::;;: in many dif-
tage to resolve every force in the problem into
its Cartesian z and y or horizontal and vertical components and then
work with these components instead of with the forces themselves.
Since all z components of the various forces lie in the same x or hori-
zontal direction, their addition is an algebraic process instead of a
geometrical parallelogram process. It can thus be stated that

The resultant of any number of forces can be found by first resolv-
ing the individual forces into their Cartesian z and y components,
then by forming the algebraic sum of all the x components and similarly
of the y components, and finally by compounding the z resultant with
the y resultant by the parallelogram process.

This is illustrated in Fig. 5, where R is the resultant of the five
forces Fyy . . . 4 Fg, formed by the polygon method. The z or hori-
zontal components of the five F forces are represented by the lengths
0X,, X1 X,, XoX;, XX, and X X5 It is seen that the first three
forces have positive z components (to the right) and the last two have
negative x components (to the left). ThedistanceOX; = 0X; — XX
represents the algebraic sum of the five z components and is the z com-




10 DISCRETE COPLANAR FORCES

Yy
¥ v
Yz Y23
R/
Y { 7
/I
Yz ] =
/
II
Y; / A
o
X; XX, X: X,
F1a. 8. The polygon of forces.
R,
z V]

F1a. 8. Construction of the resultant of two forces when their point of intersection lies
outside the paper.
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ponent of the resultant OR. Similarly, OY; is the y component of
the resultant, made up of four positive (upward) contributions and
one negative (downward) contribution.

The method of components, therefore, is useful when compounding
or resolving forces by numerical computation rather than by graphical
construction. In the graphical construction of the parallelogram, a
practical difficulty sometimes appears in that the paper on which we
work is too small to contain all the lines. This occurs when the two
components F; and F, to be added are nearly parallel and at some
distance from each other, so that their point of intersection falls far
off the paper, as in Fig. 6. A trick R
that helps us out in such cases is to add ,ﬁ'\,
nothing to the system, the “nothing” /// \
consisting of two equal and opposite R;K/ \
forces, 0Py and 0.,P,. These two N \
forces are compounded with the origi- } \ \
nal forces, F; and F;, into the result-
ants O,R, and O;R,, the sum of which

|
|
|
|
O/F; and O,F,, since “nothing” was A'gl————lé\é,———-—‘x,

two must be the same as the sum of \
added. The forces R; and R, inter- pd T \\

sect at O, nicely on the paper, and by %, —— l \
making O;R; = O.R;, and completing e ! i\
the parallelogram, the desired result- s ! L{o., \
ant O;R; is constructed. Oy L P 0,

This trick of “adding nothing” Fie. 7. Resultant of two parallel
even enables us to find the resultant forees:
of two parallel forces whose point of intersection is infinitely far away.
Clearly, in this case, the parallelogram construction breaks down
altogether. Figure 7 is a repetition of Fig. 6 with the same letters,
except that this time the two forces F; and F, are parallel, and the
“nothing” (0P, to the right = O,P, to the left) is taken perpendicu-
lar to F; and F,. Again the resultant of 0.F; and O.F; must be the
same as the resultant of O.R, and O.R; because nothing was added.
But O,R; and O.R; intersect at O;, and now we slide the two forces
along their lines of action to bring their origins to O; and then add
them by the parallelogram of forces. The resultant is vertical (parallel
to F, and F,), which becomes clear at once if we consider the horizontal
and vertical components of O;R; and Os;R;. The horizontal com-
ponents are equal and opposite (0P, and O,P;) and thus add to zero.
The vertical components are F, and F; and thusadd to F; + F; = R,.
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One more result can be deduced from Fig. 7 by geometry, and that
is the location of the resultant, between F, and F,. Consider the
similar triangles O,P.R, and 0,0,0;. We have

0304:0104 = FllH

when H is the horizontal force 0.P; = O,P,.
Similarly we find from the triangles O,P,R; and 0,0,0,

0304:0204 = FzZH
Dividing these two equations by each other, we find
0,04:0,0, = F;:F,

or in words, the resultant of two parallel forces is equal to the algebraic
sum of the two forces and is located so that the ratio of the distances
to the two components is equal to the inverse ratio of the forces, the

R=F+F,
1742 n
N O ~r———m .{
& 72
31 A
ke———{ ——=
1’11 R=F3-F;
—a o0& |73
Fia. 8. Location of the F1a. 9. Resultant of parallel forces
resultant of two parallel in opposite directions.
forces.

resultant being closer to the larger of the two forces (Fig. 8). This
result is true also when the two parallel forces are in opposite direc-
tions, in which case one of them is considered negative, and the formula
of Fig. 8 shows that one of the two distances a or b must be negative.
Since the resultant lies close to the larger force, b must be negative
(Fig. 9). This is the relation of the lever, which was known to Archi-
medes. A better and clearer way of deriving and understanding these
results is by means of moments, as explained in the next chapter.
Problems 9 and 10.



CHAPTER 1II
CONDITIONS OF EQUILIBRIUM

B. Moments. The concept of “moment,” as it i3 used in me-
chanics, is the scientific formulation of what is everybody’s daily
experience of the ‘“turning effect” of a force. Consider the wheel of
Fig. 10a, which can turn with difficulty on a rusty axle. If we want
to turn it, we know that we have to apply a force to the wheel away
from its center, the farther away the better. Also we know that the

R R 7 RF@F
X 7 A n‘ r

N/ B

\ AL

o 0

(a) €6) (c)

Fia. 10. Moments, showing a special case of Varignon’s theorem.

force should be applied roughly in the tangential direction; a radial
pull has no effect. Thus, in Fig. 10a, the turning effect of the force F
is caused by its component T, while the component R is ineffective.

Abstracting ourselves from the wheel and directing our attention
to the diagram of Fig. 10b, the moment is defined as follows:

The moment of a force F about a point O is equal to the product of
the magnitude of the force F and the normal distance ON between the
point O and the line of action of the force. ,

Thus a moment is measured in foot-pounds or inch-pounds. In
Fig. 10b, let the distance OA be denoted by r, and let « be the angle
between the force F and the tangential direction. Then the distance
ON, the “moment arm,” is r cos a, and the moment is Fr cos a.
Applying the definition to the tangential component T, the moment of
TisT-r=F cos a-r, equal to the moment of F. The moment of
the radial component R is zero because its moment arm iszero. Thus
we see that the moment of the force F about O is equal to the sum of
the moments of the two components of F about the same point O.
This is a special case of a general theorem, the theorem of Varignon,

13
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which we shall presently prove. In Fig. 10c look at the triangle OAF
and consider the force AF as the base of that triangle and ON its
height. The area of the triangle is half the base times height, or
16 AF (measured in pounds) times ON (measured in inches). This
is half the moment. Thus it can be said that the moment of a force
equals twice the area of the triangle made up of the force and radii
drawn from the moment center O to the extremities of the force. Thus
the vertically shaded triangle OAF represents half the moment of the
force F about O, while similarly the horizontally shaded triangle OAT
vepresents half the moment of the force T about 0. We have seen
previously that those two moments are the same, and this is verified
by the areas of the triangles, which are seen to be the same if we now
consider the common side OA to be their base and AT = RF to be
their height.

Now we come to the theorem of Varignon (1687), which states that

The moment of a force about a point is equal to the sum of the
moments of the components of that force about the same point.

In Fig. 11 let the force be AF and its two components AC; and AC..
Consider moments about the point 0. Using the triangle representa-
tion, the moment of F is twice the area of the triangle OAF, whereas the
moments of the two components are twice the triangles OAC, and
0AC;. We have to prove that the area of the first triangle is the sum
of the areas of the other two. We note that all three triangles have
the common base OA. The three heights are FNy, C1N;, and C2N,.
Drop the perpendicular C1P to FNy. Then

FNp = NFP +PF = 01N1 + CzNQ,

because C1F being parallel and equal to AC,, the triangles C.PF and
AN.C, are equal. Thus the height FN7 of the triangle OAF equals
the sum of the heights of the triangles OAC; and OAC,, and since all
three triangles have a common base, the area of AOF is the sum of the
two other areas. This proves Varignon’s theorem. As an exercise,
the reader should repeat this proof for another location of the moment
center O, such as O, in Fig. 11, for which the moments of the two com-
ponents C; and C; have different signs, one turning clockwise, the
other counterclockwise.

Another proof of this theorem, employing the method of resolution
into Cartesian coordinates, is as follows: In Fig. 11, take a coordinate
system with the moment center O as origin and with the line OA as
y axis, the z axis being perpendicular thereto. Now resolve all three
forces F, C,, and C; into their z and y components. The three y com-
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ponents have no moments about 0. The three « components all pass
through A and have the same moment arm OA. But the x component
of F is the sum of the two other x components. With the same moment
arm OA, the moment of the z component of F equals the sum of the
moments of the two other x components. Finally, by Fig. 105, it

Fi1a. 11. Proof of Varignon’s theorem.

was proved that the moment of any z component equals the moment
of the force itself, which proves Varignon’s theorem.
Problems 11 {o 13.

6. Couples. Now let us return to the problem of composition of
parallel forces (see Fig. 8). The force R is supposed to be the resultant
of F; and F,. Clearly R has no moment about the point O through
which it passes, and if R is to be completely equivalent to the sum of
F, and F,, the sum of the moments of F; and of F; about O must also
be zero by Varignon’s theorem. Thus Fia — Fb = 0, or the clock-
wise moment Fa equals the counterclockwise moment F;b. The same
relation holds for Fig. 9.

Consider two parallel forces in opposite directions, as in Fig. 9,
in which F, and F, are nearly alike so that the resultant F; — F, is
small. Then the distances a and b become large, which can be seen
as follows;
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bF
F 1@ = F 2b, a = 7;?
_bFy (P _b(Fy = Fy)
a—b—-F,]l -—b(F1 1>_T
80 that
b B
a — b o 9 — F]
If the forces are nearly alike, the right-hand member of this expression
becomes large; in the left-hand member, the distance b of the resultant
then is large in comparison to the distance a — b between the two forces
F,and F,. In the limiting case, when the two forces F; and F; become

Fy

2]

Fia. 12. The resultant of a pure couple is a ‘' zero force at infinite distance.”

completely alike, equal, and opposite, as in Fig. 12, the combination is
called a couple.

The resultant of a couple is an infinitely small force at infinite
distance.

The moment of the couple is the sum of the moments of the two
forces, or the moment of the resultant. The latter is not useful to us
as it gives the moment in the form of 0 X «, which may have any
value. The moment in Fig. 12 about the point A is Fc clockwise;
about the point B it is again Fc clockwise; and about the arbitrary
point C it is again Fc clockwise.

The moment of a couple is the same about every point in the plane.
The moment of & force varies, of course, with the choice of moment
center.

We will now show that the only important property of a couple in a
plane is its moment. The fact that the forces in Fig.*12 are drawn
vertically, for instance, will be shown to have no significance for the
determination of equilibrium. By “adding nothing”’ to a couple, we
can change its appearance completely. Let in Fig. 13a the couple be
F, F, and let us add to it “nothing” in the form of the forces P, P in
the mid-point and parallel to F. Now let us combine one force P
with each of the forces F to form the resultants R. The two resultants
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R, R form a new couple with larger forces, a smaller distance between
them, and with the same moment.

In Fig. 13b, the “nothing” P, P is in a direction perpendicular to
F, F; the resultants R, R are larger and their normal distance smaller
than the original couple FF, but the moment is again the same by
Varignon’s theorem. We do not distinguish at all between these
various appearances of the couple and call FF or RR in Fig. 13a or
13b one and the same couple, designating it sometimes by a curved
arrow as in Fig. 14,

/
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F1a. 13. A couple in a plane can be represented by two forces in many different ways.

Therefore, a couple in a plane is completely defined by its moment
only, irrespective of the direction or magnitude of its two constituent
forces. A couple in a plane is thus an algebraic scalar quantity,
whereas a force in a plane is a vector quantity. The magnitude of
the couple can be expressed by a single number (inch-pounds, positive
or negative), but for a force through a point in a plane, we have to
specify two numbers: for instance, the z and ¥ components in pounds.

A homely example of this occurs when a man alone in a rowboat
near a dock wants to turn the boat. He can do this if he will grab
two points of the dock with his two hands as far apart as possible and
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then push-pull. The couple thus exerted by him on the dock has a
reactive or counter couple from the dock on him and through his feet
on the boat. It is completely immaterial to the turning effort on the
boat whether the man stands at the bow and push-pulls fore and aft
or whether he stands at the stern and push-pulls sidewise; the couple
is the same. If, however, he attempts to turn the boat by a force, .e.,
by one hand only, his position in the boat is of crucial importance;
when he pushes on the dock, the rotation of the boat will be in one
direction when he stands in the bow and in the opposite direction
when he stands in the stern.

F

le.f14. The resultant of a force and a couple is the original force displaced parallel to
itself.

In the process of compounding a large number of forces on a body,
we often encounter the problem of finding the resultant of a force F
and a couple M, as in Fig. 14. This can be shown to be equivalent
to a single force of the same magnitude F, shifted sidewise through a
distance M/F. To understand, we use the trick of adding ‘“‘noth-
ing” in the form of the pair of forces Fy, F,, each of which is equal to
F. Now consider the combination of F and F,, which is a couple equal
and opposite the original couple M, and thus the two cancel each other.
All that is left is the force F;. Thus in Fig. 14 the combination of F
and M, both printed in heavy line, is equivalent to the single force Fy,
printed in heavy dashes.

The sum of a force and a couple in the same plane is a force equal
in magnitude and parallel to the original force shifted sidewise through
a distance equal to the moment of the couple divided by the force.

Problems 14 to 16.
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7. Equations of Equilibrium, By the parallelogram construction
any number of forces in a plane can be combined into a single resultant
force, with the notable exception that if we end up with a pure couple,
consisting of two equal and opposite forces some distance apart, it is
impossible to combine these further into a single resultant. (Another
way of expressing the word “impossible” is by saying that the result-
ant is infinitely small and located infinitely far away.)

The resultant force tries to push the body on which it acts in its
own direction and tends to accelerate it (page 175). A resultant couple
tries to turn the body on which it acts and tends to accelerate it (page
215). The fourth axiom (page 6) stated that a body in equilibrium
remains so if no force at all is acting on it. If there are several forces
acting on it, it will still remain in equilibrium if these forces have no
resultant. Thus we arrive at the first statement of the condition for
equilibrium in a plane:

If, and only if, the total resultant of all forces acting on a body
in a single plane is zero, the body once in equilibrium will remain in
equilibrium. The qualification ‘‘once in equilibrium”’ in this defini-
tion calls for an explanation. Later, on page 175, we will see that a
body on which no forces act may be moving at constant speed, and
hence is not “in equilibrium” by the definition of page 3. In the
remaining chapters on statics in this book, up to page 156, we will
assume that the body is always in equilibrium to start with so that the
qualification will not be repeated.

If we work with z and y components in a coordinate system, the
sum of the z components of all individual forces is the 2 component of
the resultant, and similarly for the y components. Thus, if the sums
of the z and y components are both zero, there is no resultant force,
and the only thing left may be a couple. Then, if the sum of the
moments of all z and ¥ components of the forces about one arbitrary
point is zero, we know that the couple has zero moment because the
resultant force is already zero and can have no moment. Thus we
have the second statement of the conditions for equilibrium in a plane:

A body is in equilibrium under the influence of forces in a plane if
and only if the three conditions below are satisfied :

a. The sum of the z components of all forces acting on the body
must be zero.

b. The sum of the y components of all forces acting on it must be
Zero.

¢. The sum of the moments of the x and y components of all forces
about one arbitrary point must be zero.
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Expressed in a formula this condition is
X =0, Y =0, M =0 @

In a third form in which the equilibrium conditions appear, only
moments are considered, and no force resultant is computed at all.
‘We have seen that any force system is equivalent to a single resultant
force or to a couple. In either case, if we compute the moment about
an arbitrary point and find that moment to be zero, the chances are
that there is equilibrium. The only possibility of reaching a wrong
conclusion is when the moment center happens to be chosen on the
line of action of the resultant force. Then there is zero moment but
no equilibrium. Thus the zero moment about one arbitrary point is a
necessary condition for equilibrium, but it is not a sufficient condition.
Now let us choose a second point and compute the moments about it.
If there is equilibrium, the moment is found to be zero, and conversely,
if we find a zero moment, the chances are very great that we have
equilibrium. However, it is still not sure, because even that second
point may lie on the line of action of the resultant force. To be
completely sure, we compute the moments about a third point, not
lying on the straight line connecting the first two moment centers.
If the moment about this third point is still zero, we conclude that the
resultant itself must be zero because the resultant must have a moment
arm about at least one of the three points. In addition, there cannot
be a couple because the moment is zero. Thus we arrive at the third
statement of the conditions for equilibrium in a plane:

A body subjected to forces in a plane is in equilibrium if the
moments of all forces taken about three different moment centers,
not lying in a straight line, are zero.

Tt is useful to know all three forms of the equilibrium conditions
because, depending on the character of the particular problem, one
form will give a simpler solution than another.

Problems 17 to 25.

8. Applications. The foregoing principles of statics suffice to
explain the operation of and the forces involved in many objects
and mechanisms of daily use. In this section eight of these will be
explained in some detail:

a. The single pulley wheel

b. The boom hoist

¢. The hinged arch

d. The beam on two supports
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e. The crank mechanism

f. The differential hoist

g- The locomotive equalizer gear
h. Sailing against the wind

Others are left as exercises in Problems 26 to 52.

a. The Pulley Wheel. On page 7 the statement was made that
the tension forces in the two ends of a flexible rope slung over a (non-
rotating) pulley with a frictionless bearing are the same. In order to
understand this with the help of Fig. 15, we start with the first essential

step in any analysis of statics: the choice P
and isolation of the “body.” We choose //\
the wheel and the rope cut off at some dis- sl \\

/

tance from the pulley at both ends, exclud-
ing the journal or shaft on which the pulley
can rotate. The friction between the rope
and the wheel is supposed to be sufficiently
large to prevent slipping, and we shall neg-
lect the weight of the wheel and of the
rope. Then there are three forces acting
on the body: the two rope forces and the
force from the shaft on the wheel. The /

body is in equilibrium; therefore, the sum Fic. 15, Forces on a friction-
of the moments of all forces about any point ¢ Pulley:

must be zero. We take moments about the shaft center O and conclude
(in the absence of bearing friction) that the two rope forces must be
equal. Calling them P, their resultant R is constructed graphically in
Fig. 15. It isseen to pass through the center O and to be of magnitude
R = 2P cosa. Now we apply the first statement of the conditions of
equilibrium (page 19). The moments are zero about 0, and the result-
ant of all forces must be zero also. Hence, the third force on the body,
i.e., the force from the shaft on the wheel, must be equal and opposite
to E. The force R, by the axiom of action equals reaction, is the force
from the wheel on the shaft, which is then further transmitted to the
supporting structure. In other words, R is the load of the pulley
wheel on the supporting structure.

In case there is friction in the bearing, that bearing can support a
couple, and the two rope tensions are no longer necessarily equal.
The difference between their two moments about O must be equal to
the friction couple or friction ‘“torque.”

This is the simplest way of treating the problem. It can be solved
also by applying the third criterion of equilibrium (page 20), but at
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the expense of greater complication. First we take moments about O
and conclude that P = P. Then we take moments about A, which
automatically gives zero and leads to no new result. Finally we take
moments about B. The moment arms are not too simple, and the
reader should verify for himself that

P 7 8in 2«

= Rr cos a
tan o

from which the previously obtained relation between R and P follows.
b. The Boom Hoist. Consider in Fig. 16 a simplified version of a
boom hoist, consisting of a mast AD, a boom AB, hinged without

F1e. 16. A simple boom hoist.

friction at 4, held by a cable between B and the mast at D, and carry-
ing a dead load W at B. Neglecting the weight of the boom, what are
the forces in the boom, the cable, and the mast?

First we must isolate a body, and we choose for it the boom. At
A there is a force on the boom from the hinge axis, but since there is
no friction, there can be no couple at that end, and the force must
pass through A. At B there are two forces on the boom, from the two
cables BW and BD. Cables can transmit only tensile forces along
their center lines; thus the two forces pass through B, and if we knew
their magnitudes, we could construct their resultant. This resultant,
together with the force at A, must reduce to zero, since the boom is
in equilibrium. Hence the force at 4 must be along the center line
of the boom and the resultant of the two forces at B must be equal and
opposite to it. In future applications we usually omit this long story
and recognize at the start that a bar, hinged without friction at both
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ends, and not supporting lateral loads along its length (in our boom
the weight was neglected), can have only a compressive or tensile
force along its center line.

The next body we isolate is the load W with a short piece of rope.
There are two forces: the weight or force of gravity W and the rope
tension. Hence the rope tension is W. In future applications, we
usually omit this analysis and state the conclusion immediately.

The third body we isolate is the crux of the problem. It is the
upper piece of boom at B with two short pieces of rope attached to it.
On this body there are three forces acting, all along the respective
center lines; one of the forces is known to be W, the other two are
unknown. Constructing a (closed) triangle of these three forces, as
in Fig. 16, leads to the values of the two other forces, such that the
resultant of all three forces on the body is zero. The directions shown
in the triangle of Fig. 16 are the forces on the body; therefore, the
lower part of the boom pushes up on the body (the boom is in com-
pression with the force C), and the cable force, being to the left, pulls
on the body so that the cable is in tension with the force 7. Finally,
the forces on the mast are a pull to the right at D and a push down to
the left at A. These forces bend the mast and are transmitted to its
foundation. The calculation of the stresses in the mast caused by
these forces is a question in “strength of materials,” which we are not
yet ready to consider.

Now consider the more realistic picture of Fig. 17, where the load
can be hoisted up by means of a (frictionless) pulley at the end of the
boom and a winch drum. We do not repeat the analyses for the boom
and for the weight just given, but we immediately apply our equi-
librium conditions to the body consisting of the pulley and the piece
of rope slung over it. We conclude from Fig. 15 that the tension in
the rope between the pulley and the winch is again W, and Fig. 17a
shows the force F exerted by the pulley on its shaft, 7.e., on the upper
end of the boom, as in Fig. 15. This force F is what the boom feels,
so that from now on the analysis is the same as in Fig. 16, only F
replaces W as the weight load on the boom. The triangle of forces
for the isolated body consisting of the top end of the boom is shown in
Fig. 17b. It is concluded that the angle « between the boom and the
winch rope had better be made smaller than the angle 8 between the
boom and the vertical; otherwise the force in the boom-supporting
cable reverses and becomes compression. Thus with the arrange-
ment of Fig. 17, if the boom is too high (small 8), the winch will pull
it still higher, and the system collapses. In actual constructions the
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boom support cable is made of variable length, and the boom itself
can be lifted or lowered by means of another winch.

¢. The Hinged Arch. In some civil-engineering applications, the
structure of Fig. 18 is encountered, consisting of an arch, hinged

Fie. 17. A boom hoist with hoisting drum.

at its two points of support A and B, and having another hinge at
the apex C. Certain loads are placed on the structure, and we are
required to find the reactions at the supports A and B. We note that
the half arch between A and C is a rigid body, hinged at both ends,
carrying certain forces, and as long as the ends are hinged and the
forces remain the same, the reactions remain
the same whether the arch is painted green
or red or whether it is made of steel or of 14 -1
wood or whether it changes its shape in any

173

C
A £z
A B B
/4 74 7
Fia. 18. A hinged arch. Fia. 19. Another form of

hinged arch.

way. Therefore, the problem of Fig. 19 is again a “hinged arch,”
although the “arches” are now straight bars. In order to solve the
problem of Fig. 19 by statics, we subdivide the system into three isc-
lated bodies: the two bars, each cut off just below the top hinge, and the
top hinge itself (Fig. 20). At the cuts and at the supports unknown
reaction forces are acting, which are denoted by X, X,, X3, and X on
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the left bar, and by X, Xe, X7, and X; on the right bar. Then, by the
law of action and reaction, the opposites of the forces X3, X4, X7, and X

X4l
Xs
11

X,

V2 Xe
lef [
X 8 A

H>

Xs

Fra. 20. Forces acting on the system of Fig. 19.

act on the hinge. For the left bar we can write three equations of equi-
librium (2V = 0, ZH = 0, ZM = 0) and similarly for the right bar.

For the hinge body we can write ZH = 0and ZV = 0,
while the third or moment equation becomes mean- !

Ce

ingless (0 = 0) because all the forces pass through the 11
same point. Wethushave3 4 3 4+ 2 = 8 equations

for the 8 unknown reactions.
work, and it can be greatly simplified by a different

approach.

This is a great deal of ¢ 4y

F16. 21. Resolu-

First, in Fig. 19, we take each load and resolve it tion of a force in

into two parallel components C at the nearest hinges,

~

F
£, Nz
7

B

’
F1a. 22. Resolution of a force F

into components along two hinged
members.

the middle of a
) N beam into compo-
as shown in Fig, 21. nents at its end

After this has been Divees:

done, the hinged arch is loaded only by
vertical and horizontal loads at each of
the three hinges 4, B, and C. The loads
at A and B are directly passed on to the
foundation so that what is left is the arch
of Fig. 22, loaded only by a single force
F at the top hinge. Then the arch con-
sists of two bars, each of which is hinged
at both ends and has no lateral loadings
along its length, so that by page 23 each
bar transmits only a force along its own
center line. Now consider as the iso-

lated body the top hinge only, subjected to three forces, the load F and
the two bar forces F4 and Fz, and construct the force triangle (Fig. 22).
The directions of the forces indicated are those from the bars on the
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hinge; thus we see that bar A is in compression and bar B is in tension.
These two bar forces are transmitted to the bottom hinges A and B
and to the foundation. The total force on the foundation is made up
of these plus the contribution of the components C4 of Fig. 21 that are
directly transmitted.

Problems with two hinges between the supports, known sometimes
as three-bar linkages (Problems 50 and 51) are treated in a similar
manner.

d. The Beam on Two Supports. Consider the beam of Fig. 23 on
two supports. Note that one of the supports is indicated as a hinge,
which is a symbol for a support that can give a horizontal as well as a

HytVy

Fi1a. 23. To find the support reactions of a beam.

vertical reaction force to the beam, while the other support is shown on
rollers, which means that no horizontal reaction is possible. If we
had not done this and had put the beam on two hinge supports, we
could have installed the beam on its supports while pulling it length-
wise from both ends, or we could have just put it in plainly and then
moved the hinge supports a little farther apart from each other. In
either case the beam would be in tension, and the amount of tension
would be determined not by the loads on the beam but by a very small
stretch of the beam. The beam is then said to be a ‘“statically indeter-
minate structure.” This subject will be discussed again on page 73.

The beam of Fig. 23 is subjected to certain loads, and we are
required to find the bearing reactions at A and B. Since B cannot
have a horizontal reaction, we name the unknown reactions Va, Hu,
and V, and note that they are three in number. We can now write
the three equations of equilibrium:

V=0, VitVetVs=VitVs
SH =0, H,=H,
ZMA=0, V1a+V2(a+b)+Va(a+b+C) = Val

and we can solve these for V4, Vs, and Ha.
Another method of solving the problem is by writing three moment
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equations about three non-collinear points (page 20); for instance,
the points A, B, and a third point at a distance p above A. The first
of these equations is the same as the third of the previous set. The
second equation is

ZM;z =0, Vad=Vib+c+d) + Vilc+d) 4 Vid

The third equation contains first of all the same terms as the =M,
equation (which all together are zero and thus can be eliminated)
and in addition the terms H.p — Hjp. Setting this equal to zero gives
the middle equation of the above set. This second method in this
case leads to more algebraic work than the first method.
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Fia. 24. The crank mechanism.

Still another method is to split up each vertical force into two
parallel components at A and B. For instance, V; is replaced by a
force Vi(b + ¢ + d)/l at A and by a force Via/l at B. When this
has been done with all the forces, we have a beam loaded at the bear-
ings only, and then the loads are directly transmitted to the ground as
bearing reactions.

It is interesting to note the state of longitudinal tension of the
beam. The portion between A and H;V; has a compressive force H;
in it, while the right-hand part of the beam is free from compression.
In case the roller support had been placed at A and the hinge support
at B, the right-hand part of the beam would have been in tension Hj,
and the left-hand part would have had no longitudinal force. In
case of two hinge supports, all we could say is that the tension in the
right-hand part is greater by the amount H; than the tension in the
left-hand part, but the longitudinal force in each part of the beam
would have been indeterminate (‘““statically indeterminate’).

e. The Crank Mechanism. This mechanism, shown in Fig. 24,
consists of the crank OA, the connecting rod AB, hinged at A to the
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crankpin and at B to the crosshead, which slides without friction
between parallel guides, the piston rod BC, and the piston C. When
a force P is exerted on the piston, the machine can be kept in equi-
librium by a counter torque M on the crank. We want to know the
relation between P and M for a certain position designated by the
angle a. First we note that the piston force P is transmitted without
change to the crosshead B. Next we isolate the crosshead and stubs
of the piston and connecting rods. The connecting rod, being a
double-hinged bar without side loads, has a force along its center line
only (page 23). The guides, being frictionless, exert on the cross-
head only a force perpendicular to the guide (page 84). Thus there
are three forces acting on the crosshead, originating from the piston,
the rod, and the guide, of which one is known to be P and of which
only the directions of the other two are known. Thus the triangle of
forces can be constructed (Fig. 24a), from which we see that the guide
pushes up on the crosshead, and consequently, the crosshead pushes
down on the guide with the force P tan 8. The connecting rod carries
the compressive force P/cos 8, which is transmitted to the crankpin.
At the crankpin it can be resolved by the parallelogram construction
of Fig. 24b into a radial component (which holds no interest for us)
and a tangential component, which is seen to be P sin (a + 8)/cos 8.
The clockwise moment on the crank about the center O then is

Prsin (a + B8)/cos B,

and that moment must be held in equilibrium by a counterclockwise
couple of the same magnitude. We note that at the two dead centers
(8 = 0° a = 0 or 180°) the couple becomes zero. We will return to
this problem on pages 170 and 199.

J. The Differential Hoist. This mechanism, shown in Fig. 25,
consists of an upper wheel carrying two pulleys of slightly different
radii, 7, and 7y, constructed together as one integral piece. An end-
less rope or chain is slung twice around the upper wheel and once
around the lower floating pulley, as shown. The upper wheel is hung
from a solid ceiling or crane; the lower pulley carries the load, and the
operator pulls at the chain with a force P. 'The rope or chain does not
slip around either wheel owing to sufficient friction or other means,
and the friction in the upper and lower wheel bearings is made as small
as possible. We assume it to be zero in the analysis. We want to
find the relation between the load W and the pull P at equilibrium.
The chains are so long that they are supposed to be vertical with
sufficient accuracy.



APPLICATIONS 29

We start the analysis with the lower pulley, which from example
a (page 21) is in equilibrium if the two chain tensions T, and T'; are
W/2 each. Next we isolate the upper wheel with four chain stubs
and the supporting hook stub protruding from it. The chain tension
forces are W /2, W/2, zero, and the unknown P; the hook force is the
unknown V. The equation of vertical equilibrium tells us that the
hook supports a force W + P, which is not particularly interesting.
The equation of horizontal equilibrium reduces
to 0 = 0, unless we pull sidewise on our chain,
when we recognize that the hook supporting
force must have a sidewise component equal to
the sidewise component of the pull P. But the
interesting equation is the moment equation
about the center of the upper disk. It states that

14 w
5 To =5 i+ Pro

or

By making the outer radius r, nearly equal to T
the inner radius r;, we can make the pull P very J

small with respect to the load W and thus obtain (]

a great ‘“‘advantage.” It is noted that in the W

absence of friction the load P just calculated holds Fia. 25. The differen-
the load in equilibrium. A slightly larger pull ‘il chain hoist.

will pull the load up, and a slightly smaller pull will let the load down.
In actual practice the effect of friction is very important. We will
return to this problem on page 94.

g. The Locomotive Equalizer Gear. Anybody who has lived long
enough has at one time or another been annoyed by the wiggly four-
legged restaurant table and has tried to stop the wiggle by putting
something under the short leg. The distribution of the load on the
top of a three-legged table among the legs is a problem in statics
(page 117), but for a table of four or more legs the distribution of the
load depends greatly on very small variations in the length of the
individual legs or on small variations in the flathess of the floor on
which it stands. A large locomotive has twelve or more wheels on
which the load rests, and if no particular precautions were taken, it
could happen that if three of the twelve wheels were to strike high
spots simultaneously on the rails, these three would carry all of the
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load, and the other nine wheels would act as the short leg of the res-
taurant table. Of course the springs between the wheels and the
frame make this statement not quite as drastic as it sounds, but springs
in locomotives are usually very stiff. Thus designers have introduced
the “equalizer gear,” consisting of a system of levers that ensures
proper three-point support of the weight of the locomotive. Figure
26 shows three driving wheels on the same rail. Their axles turn in
bearing boxes, and on each box the locomotive load presses from above.
In the figure this is done by two levers, one each between each two
wheels. These levers in turn are pressed down by the ends of a nest
of leaf springs, which carry the locomotive load P in their center.

ry

y- 73 P2

Fia. 26. Locomotive equalizer gear for three wheels on one rail.

The static equilibrium of the leaf springs requires a division of P
into two equal halves P/2. By placing the end of the spring at the
one-third-length point of the next lever, this P/2 is divided into P/3
and P/6 at the bearing boxes. On the center wheel there are two
loads P/6 so that ultimately the load P is equally divided over the
three wheels by this equalizer gear. The reader should convince
himself that if one of the three wheels is set on & 1-in.-high spot, then
still the load is equally divided between the three wheels.

Figure 27 shows an equalizer gear to divide a load into four equal
parts over four wheels on two axles on both rails.

A good locomotive construction consists of a combination of two
Figs. 26 and one Fig. 27, with the total weight supported in three
points, two as in Fig. 26 on the two sides of the frame comprising the
forward driving wheels, and one, as in Fig. 27, in the center of the
frame near the aft end close to the firebox.

h. Sailing against the Wind. 'This is one of the major inventions
that ushered in our modern age. The Greeks, Romans, and other
ancient peoples could not do it, and the art was developed, primarily
by the Portuguese, in the century before the great voyages of dis-
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covery. Without being able to sail against the wind Columbus would
hardly have opened up a new world, and when he did it, he was using
a newly developed modern invention.

In Fig. 28 let 8 be the angle between the sail and the ship, and let «
be the angle of attack between the wind and the sail. A sail acts

Pre

Fia. 27. Equalizer gear for four wheels on two rails.

very much like an airfoil or an airplane wing; the force F exerted by
the wind is just about perpendicular to the sail. This force F can be
resolved into the forward and sidewise components F; and F,, of which
in “sharp” sailing, as in the figure, the sidewise force F, is consider-
ably greater than the forward force F,. Wind
The ship is constructed with a large /ﬂ\
keel, which gives it great resistance
against sideslip, while the resistance
against forward motion is small
Therefore, even with a small forward
force F,, the ship will still move more
in the forward direction than sidewise.
From this simple explanation it would
seem as if the ship could sail almost
dead against the wind, with
a = f = 1° or so. In practice thisis
not so; the wind force on the sail is
roughly proportional to a, so that for & = 0 the wind force F on the sail
is zero, and for zero sail angle 8 the forward component of F becomes
zero. In practice, therefore, both « and g must have definite values,
and the ship cannot sail dead against the wind. Later (page 432) we
will return to this problem to clear up some points; in particular, the
wind direction shown in Fig. 28 is that of the wind relative to the
(moving) ship, which is not the same as the direction of the wind with
respect to the (still) water.
Problems 26 to 52.

Fig. 28. S8ailing against the wind.



CHAPTER III
DISTRIBUTED FORCES

9. Parallel Forces. We have seen in Fig. 8 (page 12) that the
resultant of two parallel forces has the magnitude of the sum of the
two components and is located close to the larger one of the two com-
ponents, with distances to these components inversely proportional
to their magnitude. We also recall that a resultant force is ‘“‘stati-
cally equivalent” to the combined action of the two components and
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Fig. 29. Resultant of many parallel forces.

by Varignon’s theorem (page 14) the moment of the resultant about
any point is equal to the sum of the moments of the components. In
case we have three parallel forces, we can first combine two of these
into a resultant and then add that resultant to the third force, and for
more than three forces this process can be repeated over and over
again, so that we can construct the resultant of a large number of
parallel forces. In this manner we recognize that the value or magni-
tude of the resultant is the sum of the magnitudes of all components,
taken algebraically. Also, the moment of the resultant about any
point is equal to the sum of the moments of all components.

Thus in Fig. 29, taking moments about the origin O of the coordi-
nate system, we have

32
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R = zF,. and Rzz = EF,.x,.
or combined
e = ZF .z,

BT TZF,

These sums are understood in an algebraic sense—for instance, the
force F, of Fig. 29 gives a negative contribution to the ZF, sum as
well as to the ZF,z, sum.

The most frequently occurring parallel forces are the gravity or
weight forces acting on the parts of a large body. We can imagine
the body to be subdivided into small elements, and then we can
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F16. 30. Center of gravity.

imagine invisible strings between each such element and the earth;
each (imaginary) string having a tensile force dW in it. Thus the
body is acted upon (Fig. 30) by a large number of small forces dW,
all vertical and hence parallel. These forces are held in equilibrium
by the support reaction forces F; and F;. In order to calculate these
reactions we replace the large number of weight forces by their result-
ant W, being the sum of all the little weights and hence the weight of
the whole body. The location of this resultant W is found from the
moment equation just written down, but following the usual con-
vention, we replace the Greek letter s, written =, by the German
letter s, written f, because the number of elements involved is infinitely
large. Thus

_ Jzadw

Yo =Taw

2)
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Now we can turn the body through 90 deg, support it properly, and
let gravity act again. We do not need to redraw the figure, but
imagine in Fig. 30 the weight forces to be acting parallel to the z axis
to the right. The resultant weight force W will act to the right at
distance y¢ from the x axis, and

Yo = % 2

The intersection point of the two weight forces is called the center
of gravity of the body, hence the subscripts G in Eq. (2). Now we

Y

w

[s] X
F16. 31. The resultant weight force acting in many directions always passes through
the same point G.

imagine the body turned through 45 deg or through any other arbi-
trary angle, and again we construct the resultant of all parallel weight
forces (I'ig. 31). We probably remember having seen in the past
that this third weight force is drawn to pass through the same inter-
section G so that Fig. 31 is in error.
Indeed it is, but this is by no means
obvious and has to be proved, as
follows:

Consider in Fig. 32 a single ele-
ment dW of a body, and let the
< J,J\f weight force act on this element in
| N AD 5 three different directions, 0, 90 deg,

(/] A a deg, consecutively, by turning the
Fre. 32. Toward the proof of the body suitably. We call 04 = z,
theorem of Fig. 31.

AP =y, as usual, and we call
OB = p. The quantitiesz, y, and p are the moment arms of the weight
force dW in the three directions shown. The location of the point P
is determined by z and y so that p is expressible in z, ¥, and the angle a.

p=0B=0C+BC =0Acosa+ AD = OA cos a + AP sin «

=zcosa+ ysina

Y
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Now form the total weight resultant of all the elements of the body.
In the vertical and horizontal directions this gives us Eq. (2) above,
and similarly in the « direction, we have
_[pdW
p v = J‘ dW
But, substituting the general value of p of each element into the
numerator, that integral becomes ‘

pwW = [pdW = cos afz dW + sin afy dW
= cos aWzxe 4 sin aWye

or
Pw = Ze €08 @ + Ye 8in &

because in the integrations the angle « is a constant, being the same
for every element of the body. Thus we come to the result that the
relation between pw, ze, and ye is the

Fig. 31 is drawn, the pw would be
larger than the sum z¢ cos a + yo 4
sin a.) Thus it is proved that i

The weight force W of a large 1P
body, being the resultant of all the Fie. 33. Second proof of the theo-
elemental forces dW, passes through ™™ °f Fig. 3.
the same point G (the center of gravity) for all possible directions of
the weight force relative to the body.

For another proof of this important proposition, we consider two
elemental weight points only. In Fig. 33 let these two points be A
and B with weights dW, and dW,, not necessarily equal. First let
the weight act downward, the resultant being =,, which divides the
distance AB’ into two parts AC and B’C, inversely proportional to
the weights dW; and dW,. For simplicity we imagine that dW, is
twice dWy; then AC = 2B’C. It is clear then that this force line =,
cuts the connecting line between the two weights AB into parts AD
and BD in the same ratio (again AD = 2BD). Now we repeat this
entire argument word for word in a different direction, the horizontal
one or that of angle . We always end up with a Z line passing

same as the relation between p, z, and B
y of a single element (Fig. 32). Since D//
the three weight lines of a single point A anz
obviously all pass through that point, ) I
so must the three resultant weight e ry
lines pass through the point @. (As “A@F—— —“—‘fc‘“ -

|

I
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through point D. Thus D is the center of gravity for the two mass
points, through which the resultant passes independent of the direc-
tion of the weight, and the two weights dW, and dW, can be replaced
by their sum at point D. If there is a third weight point dW; at E,
we can repeat the entire argument, this time with the two masses
dWs at E and (dW1 + dW,) at D, and conclude that the resultant of
the weight forces of the three weights dWi, dW., and dW; passes
through a single point, the center of gravity, irrespective of direction.
The proof can then be extended to four, five, and to an indefinite
number of weights.
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F1a. 34. Center of gravity of symmet- Fia. 35. Center of gravity of skew sym-
rical flat plates. metrical figures.

Later (page 119) we shall see that Eqgs. (2), which were proved here
for a plane or two-dimensional body, will continue to be true for a
three-dimensional or space body and are to be completed by a third
(2) equation of the same form. Again there will be a center of gravity
through which all weight forces pass for any direction (in all three
dimensions) of the weight force.

Problems 53 to 55.

10. Centers of Gravity. In the practical numerical computation
of centers of gravity, the first thing to look for is symmetry. When
there is an axis of symmetry, either of the rectangular or skew type,
the center of gravity must be on that axis. Consider the rectangular
plate of Fig. 34, of uniform thickness and hence of uniform weight per
unit area. Consider two equal weight elements at a and b. Their
center of gravity lies on the axis of symmetry, A4, and the whole
plate can be cut up into similar pairs of elements ¢ and b. Thus the
center of gravity must lie on AA. For the same reason, it must lie
on the other axis of symmetry, BB.

The same argument, word for word, can be repeated for the case
of skew symmetry, as in the parallelogram of Fig. 35.

The second thing to look for, after symmetry, is the possibility
of subdivision tnto plates of simpler shape. Consider the L-shap d
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flat uniform plate of Fig. 36. This plate can be cut into two rectangu-
lar plates for instance, as indicated. Each rectangle has its center
of gravity in its center of symmetry. The two rectangles have weights
in ratio of their areas, at for the upper one and (b — #)¢ for the lower
one. We note that for finding the center of gravity, it is not neces-
sary to compute the weights of components in detail; their ratio
suffices. The combined center of gravity
G is that of two weight points Gy and G,

and by Fig. 8 (page 12) it lies on the con- >G ?
necting line, so that B
G_Gz at a %
-0t b—t

Next consider the triangle of Fig. 37.
The median, or line connecting a vertex
with the middle of the opposing side, is an
axis of skew symmetry and hence contains
the center of gravity. We can concentrate L 2]
the weight of each horizontal strip into its g 36 Center of gravity of
own center of gravity and thus replace the a figure compounded of two
triangle by a “heavy center line” (Fig. rectengles:

37). The weight along this line is not uniform, the lower part weigh-
ing more per unit length than the upper part. In fact, the weight
increases linearly with the distance z from the top O and is Cyx per
unit length. Thus the weight of a piece dx is Cyx dx, and its moment

I

—————— o

|

F1a. 37. Center of gravity of a triangle.

about O i8 Cizdr -z = Ciz?dz. By Egs. (2) the distance z of the
center of gravity from the vertex is

/ C1$2 dx _ 1h8/3
T [Fewaw  CRF

Thus the center of gravity of a triangle is at one-third height from its

2
§h
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base and at two-thirds height from a vertex. We note again that the
constant C; has dropped out of the above integration without our
having computed its value, for the same reason that we did not com-
pute the individual weights of the parts of the previous example
(Fig. 36).

Now we are ready to consider a trapezoidal plate by subdividing
it into a parallelogram and a triangle (Fig. 38). The center of gravity
G of the parallelogram is at height £/2
above the base, and G of the triangle
by itself is at height /3 above the
base. The total weight of the paral-
lelogram is Cah and that of the tri-
angle, C(b — a)h/2, where the constant
C, being the weight per unit area of the
plate, does not need to be calculated,
Fie. 38. Center of gravity of a since it will drop out later. The ratio
trapezoid. of the two weights isasa: (b — a)/2,
no C appearing in it. The center of gravity of the combination, point
G, lies on the connecting line of Gy and @, at distances inversely pro-
portional to the weights (Fig. 8). Let us calculate the height of G
above the base. The difference in height between G; and @; is h/6,
and thus the difference in height between G and G, is

a R 20 h_ a h

a+®b—-a)/26 a+b 6 a+4+bdb 3
To find the height of G above the base, we have to add h/3 to this or

_k h2a+b
ke (1+a+b)_§a+b
This expression reduces to h/3 for the special case @ = 0, and it
reduces to h/2 for the case that b = a—two checks on the accuracy of
our calculation. Incidentally, it is good practice to check a final
result of any kind of calculation for reduction to simplified cases for
the purpose of discovering possible errors.

Another way of finding @ graphically in Fig. 38 is by remarking
that the line joining the mid-points of the base and top of the trape-
zoid is an axis of skew symmetry, and thus its intersection with the
line G4G. is the desired point G.

The next example is a uniform plate in the shape of a sector of a
circle of central angle 2« (Fig. 39). First we subdivide the sector into
many very small pie-shaped pieces, so small that the base of each little
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triangle, being infinitesimally short, is also straight. The center of
gravity of each little triangle lies at distance /3 from the periphery,
and thus the center of gravity of the sector plate of radius r is the same
as the center of gravity of a heavy circular arc of uniform weight and
of radius r; = 2r/3. Let ¢ be the variable angle measured from the
center, and consider an element of arc of length r; dp. Its moment
arm for horizontal forces about O is r, cos ¢, and thus by formula (2)
(page 33) the distance of the center of gravity from O is

/a ricos eride  2r} ﬁ:cos¢d¢
. _

Ta = a a
/ 1 dqp 271 / d¢
-a (+]
sin ¢ |« sine 2 sina
= 7'1 = 1 = =7 = rG
¢ o a 3

Besides being at this distance from O, the point rg, of course, also lies
on the center line of the figure, this being an axis of symmetry.

Let us check our last result against the few simplified cases we
already know. For o = 0, the figure reduces to a thin triangle, and
the distance becomes 2r/3 as it should.
This is so because although sin a/a re-
duces to the form 0/0, we can develop sin
« into a power series = o — o3/6 - - -,

Fia. 39. Center of gravity of F1e.40. Center of gravity
a sector of a circle. of a uniform flat semicircle.
which for small a reduces to « so that the ratio sin a/a becomes unity
for small . On the other hand, for @ = 180 deg, the figure becomes
a full circle, and the formula gives zero for the distance from the center,
which it should.

A particular case of some interest is the semicircular plate (Fig.
40), for which the above formula shows the radius of the center of
gravity to be

2 sinx/2 _2 2 4
3" %2 T3'x

A segment of a cirele is a sector from which a triangle is subtracted,

as shown in Fig. 41. @, is the center of gravity of the entire sector of

area r2a and weight Cr2a; G, is the center of gravity of the triangle of
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base 2r sin « and height r cos a; G is the center of gravity of the shaded
segment. We now write that the moment about O of the sector
is the sum of the moments of the segment and triangle:

Cria g rﬂg—a = Cr?(a — sin a cos a)r + Cr? sin « cos agr cos a
Again the weight per unit area, C, drops out, and we can solve for z
with the result

2 sin? a

T=re=5r—r—
3 a — sin a Ccos a

For the special case o = 180 deg, the full circle, this distance is easily
seen to be zero, as it should. Also for & = 90°, the half-circular seg-

Se pradiusis x ? )
grmen { werght is Crfa-sina cos a]

oo o 2 pe ST
Secror raa"/us R
weight is Cria

p _________________ Triangle radius is §rcosee
weight is Cr2sim e cosa

F16. 41. Center of gravity of a segment.

ment is identical with a half-circular sector, and the result reduces
to the previously obtained one, as it should. Finally, for a = 0,
the segment reduces to nothing, and = ought to be r. The formula
goes to the form 0/0 in a complicated way. The reader should check
that everything is all right by developing sin « and cos « into power
series, retaining terms up to and including o?, and working out the
value of 0/0 in that way.

Although all problems treated so far have been in two dimensions
only, many three-dimensional bodies can be reduced to flat plates or
even heavy curved lines by elementary considerations. For instance,
a solid rectangular block has three planes of symmetry intersecting
in one point, which is the center of gravity. A circular rod can be
cut up into thin circular disks with the center of gravity in the center
of each disk, and thus the rod is reduced to a heavy center line with
its center of gravity in the middle of that line. The same holds for
rods of cross sections other than a circle.

Consider the solid cone of Fig. 42, and cut it into circular slices,
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Thus the cone is reduced

to a heavy center line of varying weight density, similar to the flat
triangle of Fig. 37. Only now the radius of the circle is proportional
to z, and the area of the circle to 22,

so that the weight per unit length of
the rod is Cz? where again we do
not bother to be precise about C.
Then the weight of an element dx
is Cz? dz, and its moment about the
vertex O is Cz? dz, so that

The center of gravity of a solid
cone is at one-quarter height above
This result is true for cones or pyramids of any other cross

the base.

section as well, by exactly the same derivation.

TR

F1a. 42.
solid cone is at one-quarter height
above the base.

The center of gravity of a

Truncated cones or

pyramids are treated as the complete object less the truncated top,

®
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Fiec. 43. Re-
duction of a
crank cheek to a
rectangular par-
allelepiped for
approximate de-
termination of
of the center of
gravity.

just as was the segment of the circle.

A half sphere or a spherical segment can be cut
up into circular disks, then replaced by a heavy center
line of variable weight, and integrated along the length
of that center line.

Most objects in practical machine design consist
of combinations of pieces of plate, cylinder, parallele-
piped, cone, and the like, or can be approximated by
these. For example, Fig. 43 represents a crank cheek
with curved edges. To find the center of gravity we
take the blueprint and sketch in by eye the dotted
lines, cutting off and adding to the cheek approximately
equal areas, i.e., equal weights. Then the cheek
becomes a parallelepiped of which the gravity loca-
tion is known. In performing computations of this
character, it is useful to estimate the possible error by

a quick calculation (see Problem 62).
Problems 56 to 67.

11. Distributed Loadings.

Consider the beam of Fig. 44 on two

supports, loaded by a uniformly distributed load of ¢ Ib per running
inch, and weighing itself w, lb per running inch. What are the
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reactions on the supports? The distributed loading w + ¢ per unit
length has a resultant B = (w, + ¢), located in the center of the beam,
which is at distance [/2 from the right support. Thus, for purposes of
statics, the beam is loaded by three forces only: R, F,, and F,, and
taking moments about F; we have

! 12
Fab=R§ or Fz=§5(w1+9)

and, taking moments about F,,

2
F1b=R( —él) or F1=<l—%)(w1+Q)

It is good practice to check this result by some other method, by
verifying, for instance, that F1 + F, = R, which is seen to be correct.
Thus we have the general rule that

‘---_a---_,‘r. _________ S -
P4l
;ﬁ;’ | R
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Fi1a. 44. Uniformly loaded heam.

A distributed loading of parallel forces along a beam can be
replaced for purposes of statics by a resultant equal to the total loading
and passing through the center of gravity of the loading diagram.

We note that the above statement is restricted to *purposes of
statics.” This is to emphasize that for the purpose of calculating
the stresses in the beam, the distributed load cannot be replaced by its
resultant. The reader is referred to the argument in the middle of
page 79.

In Fig. 45 let the weight of the beam itself be negligible, and let
the loading grow linearly from nothing to 500 lb/ft as shown. The
loading can be replaced by a resultant of

14 X 500 Ib/ft X 12 ft = 3,000 b,

located at the center of gravity 4 ft from the right support. Thus
the right reaction is 2,000 Ib, and the left reaction is 1,000 1b.
Now we turn to the more complicated application shown in Fig.
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46a, which is a stiff (unbendable) beam of weight w; Ib per running
inch, loaded by a single eccentric load of P lb and supported by the
ground along its entire length. The ground has more or less the
property that it sags down locally in proportion to the load it sup-
ports locally. This is expressed by a constant k, measured in pounds
per running inch loading on the ground per inch deflection of the
ground, or lb/in./in., or Ib/in.2. The ground does not quite do this
exactly, but it is a sufficiently approximate description of the facts

q~500/b per Ft

Fia. 45. Beax with triangular loading diagram.

to be useful. The question is; What are the deflections &; and &,
at the two ends of the beam under the loading P and w,?

To solve this, we first combine the two parts of the downward
loading. The resultant weight is wl, and it acts in the center of
gravity of the weight loading diagram, i.e., the center of the beam.
That load combined with P gives a single resultant R, equal to P + w,]
and located between P and wy! at distance ¢ from the right, where

_ ’wll _l
c_b+P+’wll(a §)

This result is found by application of moments as in Fig. 8, and it is
to be verified by the reader. In order not to obscure the further
analysis with complicated algebra, we will from now on use the sym-
bols B and ¢, instead of P, a, b, and w,. As is shown in Fig. 49c,
the beam will sag into the ground as a straight line because it is
unbendable, and the reaction from the ground is proportional to the
local deflection. Thus the reaction load diagram is represented by
the trapezoidal figure ABCD, and, for equilibrium, it must be so
constituted as to have a resultant equal and opposite to the load R.
The intensity of the (upward) ground reaction loading at the left
end is k4, Ib/in. (k has the dimension 1b/in./in., and 8, is expressed in
inches, so that the product is pounds per inch). To find the total
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reaction upward we need the center of gravity of the trapezoid. That
we find by subdividing it into a rectangle 8, and a triangle §, — §,, as
in Fig. 46d. The reaction @, due to the rectangular part is ké.l,
and the reaction Q. from the triangle is 14k(8, — 8,)/. The com-
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Fia. 46. Beam on elastic foundation with eccentric load.

bination of Q; and Q. must be statically equivalent to R, so that we
write, taking moments about the right-hand end,

@ + Qe = kol + S k(5 — bl = R
L L k8,8 4 k(s — o0 & = Ro

These are two algebraic equations in the unknowns &, and &, and
should be solved by the reader with the result
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Rf.c

R c
o2 ——k—l(4 — 67)

which is the solution to the problem. When a solution is found, we
should always do two things: first, check for dimensions, and second,
check for reduction to simplified special cases.

The left-hand sides of the solution are deflections in inches; there-
fore, the right-hand sides must be in inches also; they could not
possibly be pounds. R is pounds, % is pounds per square inch, [ is
inches, and the parentheses are pure numbers. Thus we verify that
the right-hand side is also expressed in inches, as it should be.

Fia. 47. A beam on elastic foundation will lift out of the ground if the load is too far
from the center.

Now suppose E to be in the center of the beam: ¢ = 1/2. Then
we see that &, = & = R/kl as it should. Next place R at the right
end of the beam: ¢ = 0. The formula shows that §; becomes negative
and half as large as .. This means (Fig. 47) that instead of pushing
up, the ground pulls down on the left-hand end, because our definition
of k specified a ground loading proportional to the deflection. The
left-hand end must be pulled down, because the right-hand end to the
left of the load R pushes up, and without a downward pull at the left
extremity, would have a resultant to the left of R, which could never
be in line with B. The actual ground hardly ever pulls down on a
beam, so that this assumption for k breaks down when the load is
placed too far eccentrically.

Problems 68 to 73.

12. Hydrostatics. This is the name given to the subject of the
statical equilibrium of objects in connection with water or other
fluids. A fundamental property of a fluid at rest is that it can sus-
tain or transmit only compressive forces, while it is incapable of taking
tensile forces or shear forces. This means that if a piston in a cylinder
containing a fluid is pressed into the cylinder, the forces exerted by
the fluid are perpendicular to the surfaces of the piston and the
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cylinder walls, as shown in Fig. 48a. The condition of Fig. 48b,
where the force between the fluid and the wall is oblique, thus having
a normal or ‘“pressure” component as well as a tangential or ‘‘shear”
component, occurs only when the fluid is moving at some speed along
the wall. For fluids at rest, in statics problems, only the normal or
pressure component exists. This is
true not only between the fluid and
a solid wall but also between two ad-
jacent particles of the fluid itself.
Imagine in Fig. 49 a certain portion of
the fluid in the eylinder, bounded by
an arbitrary surface. Then the fluid
Fic. 48. Distinction between pres- outside that surface presses on the
sure and shear in & fuid. fluid inside it with forces perpendicu-
lar to that surface. The force is usually expressed as acting on a unit
area, say a square inch, and is then called a ‘‘pressure,” denoted by
p and measured in pounds per square inch. Force is thus pressure
times area.

Fluid pressures in many practical applications, such as hydraulic
presses, are so great that the weight forces are neg-
ligible with respect to them. Let us, therefore, con-
sider first a weightless fluid. Then the statement
can be made that in a weightless fluid at rest, the
pressure is everywhere the same. To understand
this, imagine a small cube of the fluid, and consider
the equilibrium of this cube in a direction perpendicu-
lar to two of its six faces and hence parallel to the
other four faces. The pressures on the other four
faces are perpendicular to those faces and hence have
no component in the direction we are investigating. Fie. 49. Fluid
The only forces in that direction are cal.ls_,ed. by the gff:’:ﬁ; Domndoad
pressures on the first two faces. For equilibrium the surface inside the
forces must be equal and opposite, and hence the fluid.
pressures must be equal on the two opposite faces of the cube. A larger
volume of fluid can be thought of as subdivided into a large number of
small cubes, and by proceeding from cube to cube, passing from one to
the next by means of the first axiom of page 4, we can show that the
pressure is everywhere the same.

This holds true for all possible directions at one point as well.
To see this, consider in Fig. 50a an infinitesimally small triangular
prism of angle « and of unit thickness perpendicular to the drawing.
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Imagine that the pressures on the three faces of this prism are not
necessarily equal but are expressed by pi, ps, and ps. The forces on
the prism are then these pressures multiplied by the areas as shown.
These three forces must be in equilibrium, and hence their force
triangle (Fig. 50b) must be a closed figure. The directions of the

Qasine
Lr

pacosa

(al
F1a. 50. Equilibrium of fluid pressure forces on a triangular prism.

forces are known; they are perpendicular to their respective faces.
Then the lengths of the three forces in Fig. 50b must be in ratio of
1:sin a:cos @, which can be only if p; = p, = ps.

Returning to Fig. 49, and considering that the arbitrarily bounded
figure in the center obviously is in equilibrium, we can now imagine
the interior of that figure to befrozen @ x
or solidified and state that

The resultant of all pressure
forces exerted by a weightless fluid
(at rest) on an arbitrary, completely
immersed rigid body is zero.

To see that this statement is com-
patible with the one of the constancy
of the pressure throughout the fluid,
consider Fig. 51, and, since we have
limited ourselves to two-dimensional ;:;

1G. 51. The resultant of all pressure
or plane cases only, let the body of forces is zero on a body immersed in &
Fig. 51 be a cylindrical one, bounded fuid of equal pressure everywhere.
by straight lines in the z direction perpendicular to the paper. Let us
imagine a strip of width dz cut out between A and B, and let us look at
point A. For unit width in the z direction, the area of the strip at 4 is
dz/cos a, and the force is p dz/cos «. Resolve this force into z and y
components. The xz component does not interest us, but we note that
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the y component is p dz/cos o multiplied by cos a giving pdz, a
result independent of the angle . Repeat the argument at B, and
note that the ¥ components at A and B cancel each other. This will
be true for all other vertical strips of width dz, and thus the entire
body will have no y resultant force. We then repeat the argument for
horizontal strips CD of width dy and prove the absence of the z com-
ponent. This shows that the body is in equilibrium under the hydrau-
lic pressure of constant intensity p.

This fact is often used to facilitate computations. Suppose the
cylindrical body of Fig. 52 to be submerged in a liquid of pressure p,
and suppose we are asked to compute the resultant of all pressure

forces on a part of the surface, from A to B
A P via C and D. This is a complicated integ-
ration, but we know from the above that the
required resultant must be equal and oppo-
site to the resultant pressure force over the
flat surface from A to B directly, for which
the answer can be written down immedi-
Yic. 52. The resultant of the ately. Even if no such simple piece of
pressures on a curved contour  Straight boundary as AB actually exists,
itshzh*;tsr‘;fi’;itﬂsﬁt;‘: ’Jﬁﬁ;“;t&’; the reasoning can be used. If we ask for
ends, for & body in & fluid of the resultant force on the surface from C to
the same pressure everywhere. ) glong the right-hand side, we imagine the
body cut along the straight line CD, unfreeze or liquefy the left-hand
part of the body, and answer the question for the right-hand part only.
The answer is p times the length CD in a direction perpendicular to
CD.

Now we drop the simplifying assumption of the weightless fluid
and consider cases where the pressure forces are smaller, of the same
order of magnitude as the weight forces, so that the weight of the
fluid is no longer negligible. The main problem here is that of buoy-
ancy or flotation, and the principal theorem is that of Archimedes (the
evpnxa theorem):

The buoyant force, being the resultant of all fluid pressure forces
on a body partially or totally submerged, is equal and opposite to the
weight of the fluid displaced by that body and hence passes through
the center of gravity of the displaced fluid.

Two proofs of this important proposition will be given. The first
and best proof is taken from a statics text by Simon Stevin, printed
in the year 1585. The proof is shown in Fig. 53. The first figure a
is the ocean at rest, obviously in equilibrium. In figure b an imaginary

B
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surface is drawn in the ocean. In figure ¢ the water inside the surface
is imagined to be frozen into a solid kind of ice, which has the same
weight as water. The ocean is still unaware that anything has hap-
pened. In figure d the ice is replaced by a thin steel shell of the same
shape with a weight in it, so placed that the center of gravity has not
changed. In e the weight is removed and replaced by other material,

g‘;gz 53. Simon Stevin’s explanation of Archimedes’ principle of buoyancy of floating
1€8.
leaving the total weight and the center of gravity undisturbed. In
none of these steps has the previously existing equilibrium been dis-
turbed in any way. We end up, in Fig. 53¢, with a ship on which the
downward gravity force is its weight, and the upward buoyancy force
is the same as that on the body 53b, which ———=x ——
sustains the displaced water. Thus
Archimedes’ theorem is proved. /
For the second proof of Archimedes’ law, 7
we first deduce by means of Fig. 54 that the ,/'—'
pressure of the water at a depth 4 below the ‘
surface is vh, where v is the weight of water . \

per unit volume.

The value of v is 62.4 Ib/cu ft, and thus
the pressure at 33-ft depth, for instance, IS  y,. 54 Pressure distribu-
62.4 X 33 = 2,060 1b/sq ft = 14.3 lb/sq tion in still water under the
in., roughly 1 atmosphere. influence of gravity-

Consider in Fig. 54 an imaginary eylinder of cross-sectional area A
and depth A. This cylinder has a volume h4 and a weight yhA, which
is kept in vertical equilibrium by the pressure force on the bottom,
pA. Thus p = vh, which is seen to increase linearly with the depth,
as indicated on the sides of the column of Fig. 54.

Now consider the submerged part of a symmetrical and cylindrical
ship’s hull (Fig. 55). Take an element ds at a depth z below the
water surface. Considering a slice of unit length perpendicular to
the paper, the pressure force pA = vz ds, perpendicular to ds. The
line element ds has components dz and dy, and the total pressure force
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can be resolved into horizontal dH (to the right) and vertical (upward)
dV components, which can be seen to be

dH = vz dx and dV = yx dy

Now consider the symmetrical line element on the other side of the
hull at the same depth z. Its horizontal component of pressure force,
being to the left, cancels the first one, but the vertical component is

Y
B A [
Yy /
QNX——— 13—-'d11=7xdx
l |
7xdy|L |
-_7xds
x
x
Fia. 66, Toward the proof of the law of Fia. 66. Archimedes’ law applied to a
Archimedes. non-gymmetrical ship.

still upward and thus adds. Integrating the vertical force along the
entire submerged contour of the hull, we have

V=_[dV = [yzdy = vfzdy = vA

where A is the area of the ship’s cross section under water. The
dimension perpendicular to the paper was taken to be unity, so that
vA is the weight of the submerged water. The resultant, from a
symmetry consideration, passes through the vertical center line and
hence through the center of gravity.

For a non-symmetrical submerged ship (Fig. 56), the argument
is the same up to the two components of the pressure force dH and
dV. The total horizontal resultant is

H = [dH = vfz dx

integrated from A to B or from z = 0 to z = 0, which is yz2/2J} = 0.
The vertical resultant is

V=1[,dV = [yzdy = v[darea = [ dW = W,

the weight of the displaced water.
In order to find the location of this vertical resultant W, we take
moments about O
d moment = ydV — zdH
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First we integrate the second term

/:cauar=~,/yﬁdx=‘13_"8

which between limits 0 and 0 equals zero. This is so because the
horizontal components at points P and @ are equal and opposite, and
their moments cancel. Then we integrate the first term
Moment = [ydV = [vzydy = [y(yz dy) = [y(y d area)
= [y d weight = y, - weight
* Thus the resultant passes through the center of gravity of the displaced
water.
Problems occurring in practice, which can be solved by the methods
just discussed, are shown in Figs. 57 and 58, illustrating submerged

N

F1a. 7. Pressure distribution on a flat Fia. 58. Pressures on & curved sub-
submerged gate. merged gate.

sluice gates, hinged at one end A and freely supported without friction
on the other end B. It is usually required to determine the load on
the gate and the reactions at the hinge A and the support B. The
case of the flat gate is in the same category as the beams of Figs. 44
and 45, but the arched gate of Fig. 58 is somewhat more complicated.
It has to be solved by considering the force on an element of the gate
and resolving it into horizontal and vertical components. Each of
these then must be integrated. The total resultant must pass through
the center C' of the circle, because all elemental forces are radially
directed. Then this resultant of all pressures has to be carried by
the two reactions at A and B, both of which must be radial, through C.
This is so because the reaction at B, being a frictionless support, must
be perpendicular to the support, <.e., radial through C. Then, since
the B reaction and the total pressure force pass through C, so must
their difference, the reaction through 4.
Problems 74 to 80.



CHAPTER 1V
TRUSSES AND CABLES

13. Method of Sections. A truss is a structure frequently used in
roofs, bridges (Fig. 59), and hoisting cranes, consisting of a combina-
tion of slender bars, joined together at their ends so as to form a
rigid unit. The bars are attached to each other at their ends usually
by a riveted construction with ‘“‘gusset plates,” as in Fig. 60, which

2 5
1% ) 4
beo

Fig. 59. Simple bridge truss.

4
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F1a. 60. Detail of & “joint” with members riveted to a gusset plate.

represents a detail of joint No. 4 in the truss of Fig. 59. It is seen that
the center lines of the various bars of the joint all intersect in one
point, which is supposed to be the case. As a first approximation,
we replace the riveted joint of Fig. 60 by a hinged joint, and also we
assume the truss to be loaded at the hinge points or joints only,
80 that no forces are made to apply along the bars between joints.
This is usual practice in these constructions, and the weight forces
of the bars themselves are usually negligibly small in comparison to

the loads applied at the joints.
52
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Thus, all bars are supposedly hinged at both ends and carry no
lateral loads along their lengths, so that by page 23 they are not sub-
ject to bending but transmit only longitudinal forces, either tensile
or compressive. The calculation of these forces is the subject of this
chapter. The stresses caused by these forces are known as the
“primary” stresses of the structure. In addition, there will be some
bending in the bars, because Fig. 60 is not a hinge joint, and these
bending stresses are called “secondary’ stresses. Because the bars
are usually made very long in comparison to their width, these second-
ary stresses are much smaller than the primary ones; hence the assump-
tion of hinged joints is well justified, because it leads to an answer
that is close to the truth with one-tenth or less of the work required
for the more exact solution.

In the first sentence of this chapter, a truss was said to be made
““so as to form a rigid unit.” This, of course, is not true of all com-
binations of hinged bars. For example, consider four bars of equal
lengths hinged together to form a square. This square can be deformed
in its own plane into a diamond or even into a double straight line
without any resistance. On the other hand, three bars, pinned
together to form a triangle, are a rigid structure.

The simplest way to construct a truss, ¢.e., a rigid plane bar struc-
ture, is by starting with a triangle, like 1-2-3 of Fig. 59, and then
going to a fourth point 4 by two bars, each starting from one of the
vertices of the triangle. Each following joint is then rigidly attached
to the structure by two bars starting from two previous joints (Fig. 59).
Obviously in this manner we arrive at a rigid structure, but, although
most trusses in practice are made in this manner, it is not the only way
in which a rigid plane truss can be made. For further details on this
subject, the reader is referred to Timoshenko and Young’s ‘ Engineer-
ing Mechanics.” From the manner of building up a truss we can
deduce a simple relation between the number of bars, b, and the number
of joints, 5. For each one joint added to the structure, two new bars
appear. Thus b = 2j + constant. The simplest truss is a triangle
with b = § = 3. Thus we have

, b=2% -3

a formula the reader should check on Fig. 59.

One more remark on trusses is useful before we start calculating
the forces in the bars. Imagine that in Fig. 59 one more bar is inserted,
say between joints 2 and 5, and imagine that the truss be without
loads when this is done. Since the truss is rigid, it is clear that the
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new bar has to be made to an exact length in order to fit. If it is a
quarter inch too long and it is forcibly inserted, the new bar will be
in compression, and some other bars will be in tension, all of this with-
out any external loads. Even if the new bar were just right in length
and could be fitted in without force in the unloaded condition, the
application of load would place us before a problem similar to that of
the four-legged table of page 29: the problem is said to be “statically
indeterminate,” and the new bar 2-5 is said to be “redundant.”

In what follows in this chapter we will consider only statically
determinate trusses, i.e., trusses without redundant members.

3 { X X g
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Fiag. 61. The method of sections for finding bar forces applied to a bridge truss.

In order to calculate the forces in the individual bars, we first
determine the reactions at the supports. The truss, being a rigid
body in its own plane, can be treated as such and the reactions deter-
mined as if it were a simple beam. In Fig. 59, for example, the reac-
tions to the single load 4P at joint 6 are 3P up at support 7 and P up at
support 1. After the reactions have been determined, we have a choice
between two different methods for the further procedure:

a. The method of joinis is useful when we want to know the forces
in all the bars. It will be discussed in the next article.

b. The method of sections leads to a quicker result if we want to
know only the force in one arbitrarily selected bar. ‘We now proceed
with this method.

Suppose we want to know the force in the top member 3-5 of
Fig. 59. 'Then we make a section through that bar and further across
the entire truss, as in Fig. 61, replacing the cut bars by their unknown
forces X, Y, and Z, which are shown in the figure as tensions. If,
after the calculation, we find positive answers for X, Y, and Z, then
they are really tensions, but in case of a negative X, the force is a
negative tension or a compression. Now we can consider either the
left half or the right half of the truss and note that either half is in
equilibrium. Of course we take the simplest half, which is the left
one, because there is only one force P acting on it, instead of two on
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the right. Then the three unknowns X, Y, and Z can be calculated
from the three equilibrium conditions, by any of the methods of page
19. For the specific case that only the force X is wanted, while we
do not care about Y or Z, we write the moment equation about the
intersection point of the two unwanted forces, in this case about
joint 4. Then the unwanted forces, having no moments about that
point, do not appear in the equation. In this case only the reaction
P and the force X have moments, the
latter having half the moment arm
of the former. Hence X = —2P, or
the top bar is in compression with
force 2P. Similarly, if only Z in the
bottom bar is wanted, we take mo-
ments about the intersection of X
and Y, which is point 5. From that
we conclude that Z = 3P in tension.
Finally, if only Y is wanted, the
intersection of X and Z is at infinity,
and the moment equation reduces to
a statement that the vertical com-
ponent of ¥ must balance the ver-
tical component of P. Thus the
vertical component of Y is P down-
ward, and there must be sufficient
horizontal component to give Y the proper 45-deg direction. Thus we
conclude that ¥ = P /2 in compression.

All of these results could have been obtained from the equilibrium
of the right-hand part of Tig. 61 as well, and the reader should do
this in detail.

It is noted that the section of Fig. 61 shows three cuts with three
unknown forces and that there are also three equilibrium conditions
for their calculation. This is no accident but is in consequence of
the fact that the truss is a statically determinate one. In case there
were an additional (redundant) bar 2-5, the section would show four
unknowns, and it would be impossible to calculate the four forces
from the three equations of statics.

Another example of a plane truss is the crane of Fig. 62, with a load
P and a counterweight load 2P for the purpose of keeping the left wheel
at joint 1 on the ground. We proceed from joint to joint in the order
indicated to verify that this truss is a rigid one, without redundant
members, as discussed on page 53. Now suppose we want to know

7

Fra. 62. The method of sections
applied to a crane structure.
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the force in bar 2-4. In this case it is not necessary first to calculate
the reactions at 1 and 3 because the section indicated in the figure
leaves an upper portion of the structure on which all forces are known
and in which no unknown reactions appear. This is an unusual case;
most truss cases are like Fig. 59, where each side of a section contains a
reaction, which therefore has to be calculated first. The section in
Fig. 62 passes through three bars; the point of intersection of the two
unwanted bar forces is A, and for the equilibrium of the upper part
we write moments about 4.

Four A4 + P AT =0 or Fy-2a = —P - 34a
or
Fy = —34P (compression)
Problems 81 to 85.

14, Method of Joints. With this method the equilibrium of each
joint is considered separately and consecutively. The joint is iso-
lated as a body, i.e., the joint itself and as many short bar stubs as
there are bars entering the joint. Thus the joint is subjected to a
number of intersecting forces, usually three or four (Fig. 59). It is
always possible (in a statically determinate truss) to find a joint in
which not more than two of the forces are unknown, and these two
can then be determined by a polygon construction. With two new
bar forces known after this construction, we can proceed to a contigu-
ous joint in which only two forces are unknown and so on throughout
the entire structure.

Figure 63 shows this for the bridge truss of Fig. 59. We start with
joint 1 on which are acting the known upward reaction P and the two
unknown bar forces 1-2 and 1-3. The triangle of forces of joint 1 is
started from the little circle by laying off P upward and then returning
to the little circle by two lines parallel to the bars 1-2 and 1-3. This is
possible only in the manner shown. The directions of the forces in
the diagram are as they act on the joint, the reactionforce P pushing
up, the force 1-2 pulling to the right, and the force 1-3 pushing down
at 45 deg. Hence bar 1-2 is in tension, marked 4-, and bar 1-3 is in
compression, marked —, and of magnitude P A/2. The next joint
to work on is either 2 or 3. We are not ready to go to joint 3, because
of the four bars entering that joint, three carry forces that are stili
unknown, and the polygon can be constructed only with two unknown
forces. But in joint 2 only two forces are unknown: 2-3 and 2-4.
The force diagram for that joint reduces to a double line; the joint is
in equilibrium only if force 2-3 is zero and if force 2-4 is equal and
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opposite to force 1-2. (If force 2-3 existed, it could not be balanced
by 1-2 or 2-4, because neither of those has a vertical component.)
Thus bar 2-4, like bar 1-2, is in tension with force P. Next we pro-
ceed to joint 3, in which two of the four forces are known. We start
at the little circle in Fig. 63 and lay off force 1-3 = P /2, pushing up
on the joint because the bar 1-3 is in compression. We add to this

P 2P 3P 4P
——————
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Fi1c. 63. Equilibrium force diagrams at the various joints of a bridge truss.

the zero of bar 2-3 and now complete the polygon by returning to the
little-circle origin in the two directions of bars 3-4 and 3-5. Again
the directions shown are those on the joint; hence 3-4 is in tension and
3-5 in compression.

Next we proceed to joint 4, in which nothing new occurs, except
possibly that the force vectors of bars 2-4 and 4-6 partly overlap, so
that force in bar 4-6 equals 3P in tension. From now on we have a
choice. We can proceed either to joint 5 or to joint 6. We do 5
first, 6 next, and end up with joint 7, on which all forces are known
prior to the construction, so that the triangle diagram of joint 7
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serves as a check only. That check is a very potent one, because any
error in any of the previous polygons would have made the end reaction
force different from the correct value 3P up.

This is the method of joints, and it is seen to involve quite an
amount of work. The number of lines to be drawn can be reduced
by 50 per cent when we remark that in Fig. 63 every force is drawn
twice, because every bar has two ends at two different joints. Thus
the idea suggests itself to put all the diagrams of Fig. 63 into one
single figure in which each force is drawn only once. The method of
doing this was invented independently by Luigi Cremona in Italy and

+67

+56

+46
Fig. 64. The Maxwell-Cremona diagram is a systematic combination of all the force
diagrams of Fig. 63 into a single figure.
by Clerk Maxwell in England, and the resulting diagram is known as
the Maxwell-Cremona diagram. For its construction we have to be
neat and systematic. It is necessary to take the various bars in
each joint in the sequence in which they appear when proceeding
around a joint and to adopt the same sense of rotation for all the joints.

An inspection of Fig. 63 shows that this procedure has not been
followed there; for example, joint 1 has been run around in a counter-
clockwise direction, and joint 3 has been run around in a clockwise
direction, while in joint 5, we started counterclockwise and then
skipped bar 5-6 until later.

Figure 64 shows the Maxwell-Cremona diagram for Figs. 59 and 63,
starting with joint 1 at the lower right-hand corner at A and proceeding
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clockwise around each joint. The diagram for joint 1 starts at 4,
first by laying off the vertical bearing reaction P, then the force in
bar 1-3, finally the force in bar 1-2, ending at the same point A. The
polygon of joint 2 reduces to the line AB doubled up on itself, as
in Fig. 63. Next we go to joint 3, in which forces 3-4 and 3-5 are
unknown. Because we have to proceed around 3 in a clockwise direc-
tion and have to end up with the unknown bars, we are obliged to
start with bar 2-3, which is at point B in Fig. 64. From B we lay off
the zero length for bar 2-3, then follow the force 1-3, already drawn,
strike out new with 3-5, and return home to B in the direction of bar
3-4. Proceeding to joint 4, we must start with bar 2-4, which means
point A4 in Fig. 64. We follow 2-4 and 3-4, already drawn, and strike
out anew with bars 4-5 and 4-6, ending up at the starting point A.
Thus we see that force 4-6 is 3P in tension. In this manner we pro-
ceed further until we arrive at joint 7, of which we find all forces
already drawn, constituting the check on the correctness of our
construction.

We have drawn no arrows in the various bars as we did in Fig. 63,
because each line in Fig. 64 is considered twice, at different joints.
Thus each force in Fig. 64 would have two opposite arrow marks on
it, which serves no purpose. The designation 4 for tension and —
for compression has been retained. Each joint is represented in the
figure by the area of a polygon, which has been crosshatched and
marked by the number of the joint encircled. The reader should
construct this diagram on paper line by line and understand every
detail of it before attempting to work problems.

Problems 86 to 92.

16. Funicular Polygons. Figure 2 (page 6) shows the shape
assumed by a flexible cable, supported between two points P, and P,
and subjected to a single load W3 In this chapter we propose to
generalize that simple case and load the rope, first with several loads
and ultimately with an infinite number of loads, or a *continguous
load distribution.”

Before we do that, we look once more at Fig. 2 and note that in
the two sections of rope AP; and AP, the tensions F; and F, are
different but that their horizontal components are the same, because
the horizontal equilibrium of the isolated point A requires it. In
general, the horizontal component of the tension in a rope that is
subjected only to vertical loads is constant along the length of the rope.

Now consider in Fig. 65a three parallel forces of different magni-
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tudes and at unequal distances from each other, and let these forces
act on & flexible rope. 'What shape will the rope take? The question
is indefinite and vague, because we have not specified at which places
the rope is to be fastened to a solid support, nor have we specified how
much longer the rope is than the distance between supports. The
question ought rather to be: What possible shapes can a rope assume
under the three forces? There exists a beautiful graphical solution to
this problem, which is shown in Figs. 65b and ¢. First in Fig. 65,
we lay off the loads one after the other, hitching the tail end of each
following load to the nose of the previous one. Then we take an
arbitrary point O anywhere in the paper but outside of the force line
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F1a. 65. The funicular polygon and the force diagram for parallel forces acting on a
rope.

AP,PyP;. Next we connect point O with the junction points and end
points of all the forces, which practically completes Fig. 65b. Now
we proceed to Fig. 65¢ and draw the four sections of heavy line parallel
to the four rays through O in 65b, in such a way that the line OP, in
65b which connects O with the point joining forces P, and Ps, finds its
parallel in 65¢ between the lines of action of the forces P; and P,.
Similarly, line P2P; in 65¢ is drawn parallel to line OP; of 65b, which is
the ray connecting O with the junction of forces P; and P;s. The ray
OA in 65b running to the tail end of force P; is parallel to the line in
65c¢ to the left of P,, indefinite at the left-hand end.

We claim that 65¢ is a possible shape of the rope and that every
line in 65b represents a definite force. Counsider, for example, the
triangle OP;P, in 65b, made up of the force P, and the two rays from
O to the end points of P;. This triangle can be interpreted as the
triangle of forces for the point in 65¢ where force P, rests on the rope.
The rays OP, and OP; are parallel to the sections of rope, and if OP,
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represents the tension 7’12 in the rope between P, and Py, and if further
OP; in 65b represents the tension T’ in the section of rope between
P, and P;, then the point P; of the rope, as an isolated body, is in
equilibrium under the three forces Ps, T1s, and Tas. Similarly, tri-
angle OAP; in 65b is the triangle of forces for point P, in 65¢, and
triangle OP,P; in 65b refers to point Pj in 65c.

The scale of Fig. 65¢ is in inches or feet, and the scale of Fig. 65b
is in pounds, tons, or kips (1 kip is a kilopound or 1,000 Ib).

The dotted horizontal line OB in 65b, also measured in pounds,
represents the horizontal component of tension in all sections of rope.
For example, the force in the rope between P, and P, is Ty in Fig. 65b,
which consists of a horizontal force OB and a vertical force BP;.

Let us look again at 65¢ and note that the entire rope sustains five
forces: Py, P,, Ps, and the two end tensile forces To; and T3. Obvi-
ously the resultant of Py, Ps, and P; is downward and has the magni-
tude AP;in 65b. Similarly, the resultant of T, and T’ is upward of
equal magnitude P;4. In Fig. 65¢ the resultant of the two end ten-
sions must pass through their point of intersection R. Then also the
resultant of P1, P2y and P; must pass through R.

The figure P,P>,P3;R in 65¢ is a closed polygon, and since every
side is a piece of rope (or its extension), the figure is known as the
Junicular polygon (funiculus in Latin means rope). The diagram 65b
is called the force diagram. The funicular polygon and its accom-
panying force diagram are of importance and are frequently used not
only in connection with cables or ropes but also in beams (page 71)
or for the graphical determination of centers of gravity (page 81), in
which cases the rope in the funicular diagram is fictitious.

The diagrams are not limited to the case of parallel forces shown in
Fig. 65. In Fig. 66 the three forces are not parallel, and the reader is
advised to follow all the steps in this construction, if possible without
referring to the text again. If a difficulty arises, the entire argument
explaining Fig. 65 applies word for word to Fig. 66 with one exception.
The difference between Fig. 65 and 66 concerns the horizontal com-
ponent of rope tension. In Fig. 66 each of the loads P,, P,, and P;
has a horizontal component itself; thus, in writing the horizontal
equilibrium of a load point, we conclude that the difference between
the horizontal components in the rope tensions to the left and to the
right must balance the horizontal component of the applied load P.
Only in Fig. 65 is this difference zero and the horizontal component H
in the rope a constant. In Fig. 66¢ the resultant force R of P,P.P;
is drawn parallel to AP; in the force diagram 66b.
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The question asked in the beginning of the discussion of Figs. 65
and 66 was that of determining all the possible shapes the rope could
assume under the given forces, and so far we have constructed one
shape only. Where are the other possible shapes? It is recalled
that the point O, the pole of the force diagram, was chosen arbitrarily.
By choosing a point O closer to the forces, we make the horizontal
pull H in Fig. 65 smaller; we increase the slopes of all the rays through
O and make the funicular polygon sag through considerably more.
If the horizontal pull is great, O is far to the right, the slopes of its
rays are small, and the funicular shape is flat.

Fig. 66. The funicular diagram for non-parallel forces; construction of the resultant.

On the other hand, if we move point O up, we make the slope 0A
flat and OP; steep, and we get a rope of which the right support is
higher than the left support. Conversely, lowering O raises the left
support of the rope relative to the right end.

By considering all possible locations of point O in the plane of the
force diagram, we find all the possible shapes the rope can assume.
It is remarkable that among these many shapes which the rope can
take, the resultant point R in 65c or 66¢, being the intersection of the
free rope ends extended, remains on the line of action of the resultant
force.

The most important technical application of cables is the sus-
pension bridge (Fig. 67), in which the bridge deck is suspended from a
strong, heavy, main cable by means of many thinner vertical cables,
usually equidistant and equally loaded for a uniform load on the
bridge. The main cable is supported on the top of two towers and
anchored to the ground at the shores.

The force diagram and the funicular diagram for such a case are
shown in Fig. 67, and the pole O in the force diagram has been located
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in the middle vertically, so as to make the bridge symmetrical; also,
O has been chosen horizontally so as to make the top of the cable
assume a 45-deg angle. With this it is seen that the horizontal pull
equals six vertical-cable pulls, and the total tension in the main cable
at the top of the towers A and B is 6 1/2 times one vertical-cable
load. The bridge is usually built with the towers at one-quarter-
and three-quarters-span distance, with side spans each a mirrored
picture of half the center span. With this arrangement the horizontal
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F1a. 67. Funicular and force diagrams for a suspension bridge.

tension components of the main cables at the top of the tower cancel
each other, and the towers carry only a vertical compressive force.
Problems 93 to 96.

16. Uniformly Loaded Cables. In Figs. 65 and 66 there are only
a few discrete loads on the cable, which is straight between the loads
and suffers locally concentrated changes in slope at the loads. In
Fig. 67 there are many more loads, each one smaller than the loads of
Figs. 65 and 66. Still the main cable is straight between loads and
shows small changes in slope at the loads. The horizontal component
of pull, H, is constant along the cable, and the vertical component of
pull increases by one vertical-cable force P each time we pass a vertical
cable. Thus the slope (more precisely, the tangent of the angle of
the main cable with respect to the horizontal) increases in equal
increments every time we pass a vertical cable, the increment being
P/H, as can be seen from the force diagram in Fig. 67. In case we
change the design of the bridge by adopting 24 verticals instead of
12 and thus carrying half the load on each vertical, the force diagram
only gets additional rays between the old ones, the slope increments
become half as large, and the funicular shape is practically unchanged.
In the limit when the number of verticals becomes infinite and the
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individual loads approach zero, we have the case of the uniformly
loaded cable, in which every point is subjected to an infinitely small
change in siope, and the straight pieces in between approach zero
length, so that the cable becomes curved, and the force-diagram
triangle becomes uniformly full of radii. Practical applications of
this case are found in electric transmission and telephone lines, under
the influence of their own weight, of ice or sleet deposits, or of sidewise
wind forces.

Consider in Fig. 68 an element ds of such a cable in a Cartesian
coordinate system, and let the load on this element be ¢ dx, where g,
a constant expressed in pounds per inch or in kips per foot, is the
loading per unit horizontal length dz. The actual weight, ice, or wind
force, really is expressed as ¢ ds instead of as ¢ dz, but for electric
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Fia. 68. Equilibrium of an element of cable,

cables with small slopes, the difference is not great. For the suspen-
sion bridge the load is the bridge deck, which is ¢ dz rather than ¢ ds.
The real reason for writing ¢ dx instead of ¢ ds, however, is that the
integration is very much simpler, as we shall soon see.

Further, in Fig. 68 let T be the tensile force in the cable (a function
of z), let H be its horizontal component (constant along z, because
the load has no xz component), and let V be its vertical component (a
function of z). Now we apply the equilibrium equations to the ele-
ment dz. The horizontal equilibrium states that H = H; the vertical
equilibrium equation is

av
(VA+dV) =V =gqdz or vl
But from geometry, dy/dz = V/H, so that V = H dy/dz, and
dy -9
dz* H

is the differential equation of the shape of the cable. This can be
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integrated twice to give
332
= o5 + Ciz + C:
in which the integration constants are seen to be the ordinate and the

slope of the curve forz = 0. Coordinate systems exist for the purpose
of serving us and not the other way around, so that we now place the
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Fic. 69. A flexible rope loaded by a uniform loading per unit of horizontal length has
the shape of a parabola.

origin O at the lowest point of the curve, where the ordinate and slope
are both zero. The equation of the curve then is

- 1 .2
Y=3g*
a parabola. In particular, if the span is ! and the sag in the center s,
with respect to the end supports at equal height, then

_ 9
§ = 871 12
which is illustrated by Fig. 69. This sag is seen to be proportional
to the load and inversely proportional to the horizontal tensile force
in the cable, as it should be.

The curve is always a parabola, even if the two end supports are
at unequal heights. In that case the origin of coordinates, still at
the lowest point of the curve, is no longer in the center of the span and
may be even outside the span (Problem 97). In such cases we sketch
a parabola and pick out such a portion of the curve as suits our end
conditions.

Let us now consider the case of large sags and consequently large
slopes in cables loaded by their own weight, so that in Fig. 68 the
loading ¢q ds on an element can no longer be approximated by g dz.
The differential equation for this new case is derived in exactly the
same way as before, but for ¢ dr we substitute ¢ ds, or for ¢ we sub-
stitute q(ds/dz) in the final result. Thus the differential equation

becomes
d

s’

g ds
Hdzx

gl
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The line element ds? = dz? 4+ dy?, so that

B h+ ()

The integration of this equation is considerably more complicated
than that of the parabola.

Let dy/dz = p for the time being. Then

dp _ ¢
=g VIite

and
__d_p_ = g dz
VIiFp H
The left-hand integral we look up in tables and find that its value is
log. (0 + VT %) =% + Cy

in which C, is the first integration constant.
To save writing, let (¢z/H) + Cy = A, Then

p+VItpi=et
VIidpi=—p+es
Square:
1 4 p? = p? — 2ped + ¢%4
Solve for p:
e —1 eA. — o4

2e4 2
= Eial: sinh ( + Cl)

y=/slnh(ﬁ+Cl)dx=I—q{cosh('qI§+Cl)+Cz

= ginh A

The two integration constants simply shift the curve bodily with respect to
the origin of coordinates, C: up and down, C, horizontally. By making
C, = 0and C; = —1, we place the origin in the lowest point of the curve, and

Hy—cosh——l

This is the equation of the catenary, or hanging-chain curve, from the Latin
catena, chain (see Fig. 70).

For comparison, the equation of the parabola (for the case of
loading proportional to the horizontal distance x instead of the curve




UNIFORMLY LOADED CABLES 67

length s) can be rewritten in the form

@ _1(eY
H 2\H

and the hyperbolic cosine of the catenary can be developed into a
Taylor power series:

o _1feY | 1(e) 1 (), ...

7= 2(H> +24(H) tap\r) T

The first term of this development is the same as the formula of the
parabola, and the other terms represent the difference between the

/Parabola

=,

H

Fra. 70. A parabola is a good approximation to a catenary for small sags.

two, the catenary having the larger deflection. The difference
between the two becomes significant only for large values of gz/H,
that is, for large sags in comparison to the span. The table below
gives some figures which the reader should verify from the formula.

gx/H |Sag/span| Error

2 14 349
Y 2] 2%
% Yo 0.1%

For the usual electric lines, therefore, the sag calculated by the para-

bolic formula is of the order of 1 per cent smaller than the true sag

of a catenary. Such a small difference is without practical significance

and is offset by a change in temperature of a few degrees in the cable.
Problems 97 to 100.



CHAPTER V
BEAMS

17. Bending Moments in Beams. The bars in trusses are sub-
jected to tensile or compressive forces, as we have seen in Chap. IV,
and only rarely does a bar in a truss construction have to support a
sidewise load in the middle of its span. If an elongated structural
member is subjected to lateral loads, and hence is subjected to bend-
ing, it is called a beam. Without any doubt, beams are the most
important of all construction elements, and a good working knowledge
of beam theory is indispensable to any civil, mechanical, or aero-
nautical engineer. Most beam theory is usually classified under the
subject ‘“strength of materials,”” but an important part of it, the
determination of the bending moments in beams, can be carried out
by the procedures of statics, and that is the subject of this chapter.

Consider in Fig. 71a a beam on two supports loaded by a single
vertical load P, placed off center. The reactions to this load at the
supports will be upward, of magnitude Pb/l at the left and Pa/l at
the right. Now we make a section, an imaginary cut, through the
beam and consider the portion of the beam to the left of the section
(Fig. 71b). We know that that part of the beam is in equilibrium;
also, we see the upward force Pb/l at the end L, and we suspect that
some forces (as yet unknown) may be transmitted at the section by
the right-hand portion of the beam acting on the left-hand portion.
Then, from equilibrium, we conclude that these forces at the section
must be equivalent to 8 downward force Pb/l and a counterclockwise
couple Pbc/l. The vertical force at the section is called the shear
force, and the couple is called the bending moment in the beam, both
names being quite descriptive and appealing to our everyday experi-
ence. The manner in which the shear force and bending moment act
and are distributed over the cross section is a subject in “strength of
materials’’ and does not concern us at present. In Fig. 72 it is roughly
indicated that when the beam is an I beam, the shear force is mainly
taken by the vertical web of the I section, while the bending moment
consists mainly of a compressive force in the fibers of the upper flange
and of an equally large tensile force in the bottom flange.

The shear force Pb/l equals the left bearing reaction and is inde-

68
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pendent of ¢, being the same for all locations of the section between L
and the load P.

A similar argument can be made for a section lying between the
load P and the right-hand support B. The shear force then equals

T T

(c)

|
F
| —_
L
i

e — — —d=

L

Fig. 71. Shear and bending-moment diagrams of a beam.
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the right-hand reaction Pa/l and is likewise directed downward at
the section. However, we are accustomed to consider this shear force
as a negative one, while the shear force in the left-hand section is

considered positive, and we now can .

plot the shear force as it varies along Nl
the beam in Fig. 71c. Why is it that l

of two shear forces, both acting e

downward at the section, one is con-  Fige. 72. Detail of how a shear force
sidered positive and the other nega- 8nd bending moment is taken by an
. . . . I beam.

tive? Consider in Fig. 73 a small

length dz of the beam between two sections or cuts. The small piece
is in equilibrium, so that, if the shear force S at the right is downward,
there must be an upward force S at the left. Likewise if the bending
moment M at the right is counterclockwise, as shown, there must be a
clockwise moment at the left. We now state that the shear forces at
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the right and left in Fig. 73 are the same, sign and all, and for the two
bending moments a similar statement is made. Thus, a shear force is
considered positive when the pair of shear forces acting on a small piece
dx of beam tend to rotate that piece in a counterclockwise direction.
A bending moment is considered positive when it causes a tensile
force in the top fibers and a compressive force in the bottom fibers of
the beam.

Now we return to the shear-force diagram (Fig. 71c) and check it
against the definition. Also we consider the vertical equilibrium of a
short section dz located just under the load P, and conclude from it
that:

The shear force in a beam, when passing from the left side of a
vertical load to the right side of that load, is suddenly increased by
the amount of that load.

Now we return to the bending moment and note that its value is
Pbc/l or the left-support reaction force multiplied by the distance from

B el Seee— N
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Fi1a. 73. Definition of a positive shear force and of a positive bending moment.

it. When plotted in the bending-moment diagram of Fig. 71d, this
gives a straight line passing through the left support L. An equi-
librium consideration of the right~hand portion of the beam for a cut
to the right of the load P leads to a bending moment in the right sec-
tion equal to the right-hand reaction times the distance from it, also
giving compression at the top and tension at the bottom of the beam,
and hence of the same (negative) sign as the bending moment in the
left section. The plot of this is a sloped straight line through the
right support E. These two sloped lines are shown to meet under
the load P at the same height. The reader should check for himself
that the bending moment under the load gives the same answer when
calculated from the left and from the right. The bending moment
(unlike the shear force) retains the same value when passing under a
load for a short distance, but the slope of the bending-moment diagram
changes suddenly.

If the beam is subjected to several loads, instead of to a single load
as in Fig. 71, the shear force at any section equals the algebraic sum of
all the upward loads (including the bearing reaction) to the left of
the cut, or also it equals the algebraic sum of all the downward loads
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(including the bearing reaction) to the right of the cut. Why do
these two procedures give the same answer?

The bending moment at any section is Z,P.z., summed over all
downward loads and reactions to one side of the cut, where z, is the
distance between the nth load and the cut. Again, why does this
lead to the same answer at a certain section, when calculated from first
the left and then the right?

The funicular polygon explained in the previous chapter lends itself
to a beautiful graphical interpretation in connection with bending
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Fig. 74. The funicular diagram represents the bending moment.

moments, as is shown in Fig. 74 for the case of three loads on a beam.
We start with the three loads P,, P., and P; and do not as yet calculate
the support reactions R, and Ry, as they will be found by the graphical
process. We lay off in the force diagram at the right the three forces
AP, P,, P; vertically, one hitched to the end of the other. Then we
choose at random a pole O, but to obtain a drawing of nice propor-
tions, we take O so that the two outside rays from it are not too far
from 45 deg. We draw the four rays from O. Then we construct the
funicular curve CEHNQ as if the loads were supported by a cable,
which, of course, is fictitious. We draw the closing line CQ of the
funicular curve, and we draw in the force diagram its parallel OB.
Then, as was explained previously, the line RCEHNQS represents
the shape of a cable subjected to the five forces P;, P,, P3, R1, and Rk,
where R; equals BA in the force diagram and Rz equals P;B.

Now we make the statement that the funicular diagram, as shaded
in the figure, is the bending-moment diagram.
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In order to understand this important and useful relation we
consider a section in the beam between R, and P;. The bending
moment in that section is proportional to the distance from R, (Fig.
71), and truly the funicular diagram represents this. The scale is
such that the distance DE represents as many foot-pounds bending
moment as the product of B, in pounds and the distance R P, in
feet. The line CE can be extrapolated downward, and then KL to
the same scale represents the moment of the reaction R, about the
point P; and is thus the contribution of By toward the bending moment.
Next, we consider a section 7 between P; and P,. The bending
moment there equals Ry times the distance CT less P; times the dis-
tance DT. The first contribution is 77U, and the second contribution
is UV, leaving TV as the bending moment. It has to be proved now
that the distance UV represents P; lb times DT ft to the same scale
that TU represents Ry Ib times CT ft. This can be seen from the
force diagram to the right of Fig. 74. In triangle OBA, the line BA
represents the upward reaction R, and we note that OA and OB are
parallel to CE and CD in the funicular diagram. Likewise, in tri-
angle OAP; the line AP, represents the force P;, while 04 and OP,
are parallel to the lines EU and EV in the funicular diagram. The
distance UV grows with the distance DT if the section T shifts to the
right. Also, UV is proportional to the distance AP, in the force
diagram if we let force P; grow. Thus UV represents the product of
that force and the distance. 7TU is proportional both to the distance
CT and to the force AB = R, to the same scale.

Finally, we consider the point just under load F5. The distance KL
represents the moment at K caused by the reaction E;. From it we
subtract ML, representing the moment P, times DK. From thsit we
once more subtract M N, representing force P; times distance FK. To
get this clear the reader should repeat the same argument starting
from the right, from point @, and understand the bending moment DE
under P as made up of contributions from Rz, P;, and Ps.

The “base line” CQ of the bending-moment diagram, being the
closing line of the funicular polygon, is not horizontal in Fig. 74,
because we picked the pole O at random. The closing line could have
been made to come out horizontally by first calculating the end reac-
tions, which gives point B in the force diagram, and then locating the
pole O at the same level, so that OB//C@Q is horizontal. This, however,
is not necessary, and a bending-moment diagram with a sloping base,
as in Fig. 74, is just as clear and instructive as one with a horizontal
base, as in Fig. 71d.
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The determination of the bending-moment diagrams of the various
beams in a structure is the first fundamental step towards their
strength calculation and is, therefore, of utmost importance in design.
Two more remarks will now be made to relate this discussion to what
precedes in this book. The first is that the bars in trusses (pages 52
to 59) have no bending moments in them as long as the usual practice
is followed of placing the loads at joints only, because then the loads,
acting on the hinges at the ends of the bar, are along the bar and have
no cross component to cause bending. For example, the roof truss of
Fig. 75 sustains the rafters only at the joint points. The rafters are

F1a. 75. A roof truss supports the roof at joints only so that no bending occurs in the
bars of the truss.

beams in bending, which have to carry the snow or wind load more or
less perpendicular to themselves and transmit this load by bearing
reactions to the joints of the truss underneath. Thus the rafters
are bent, but the bars in the truss are not.

Figure 75 suggests the second remark in connection with continu-
ous beams that are supported in more than two points. Such beams
are statically indeterminate (page 54). The resultant of any system
of loading on a beam can be resolved into reactions at one hinge sup-
port and one roller support in one manner only (Fig. 23, page 26).
However, if the beam is supported on three supports instead of on two,
the resultant load can be resolved into these three reactions in an
infinite number of ways. We can assign an arbitrary value to one of
these reactions, consider it as a load on the beam, and then calculate
the other two reactions by statics. This is what is meant by a beam
that is statically indeterminate, because it has one or more redundant
supports. The construction of a bending-moment diagram by the
rules of statics, as in Fig. 71 or Fig. 74, can be accomplished only for
statically determinate beams.

Not all statically determinate beams are on two supports; there
are also cantilever beams, built in at one end and free at the other
(Fig. 76). In such beams, the bending moment at the free end is
zero (if in doubt about this statement, isolate the last piece dz of
the beam and set up the equilibrium condition), while at the built-in
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end the wall may transmit forces, shear as well as bending, to the beam.
The reader should go over the details of Fig. 76 and check the diagrams
by caleulating the shear forces and bending moments numerically in
a few points.
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Fia. 76. Bending of a cantilever beam,

Figure 77 shows a plank on two supports A and B with an over-
hang. A second plank is supported by the ground at C and is laid
loosely on the overhang at D. In order to make the system statically
determinate, it is necessary to assume a freely sliding contact at D;
otherwise, the beam CD could be in tension or compression without
load. The shear-force and bending-moment diagrams of this com-
bination can be calculated and constructed by isolating various parts
of the beams and writing the equilibrium conditions. In particular,
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the reader should reason out for himself that the bending moment must
be zero at A, C, and also at D. The shear force at D is not zero. The
loads P; and P; are drawn in full in the figure and the consequent
bearing reactions in dashes.

Problems 101 and 102.

18. Distributed Beam Loadings. Consider the beam of Fig. 78,
subjected to a uniform downward load of w 1b per running foot, taken
by two equal end reactions B = wi/2. What is the shear force and the

25

Shear'- force diagram

B
N, T ¥, | e
N
i"z‘z‘?il'l IFen 17 ¥
I ] l |
o |
-
i 2 2 L BA
L (ANDL 1 et
BBl IHEZANN
i
| |
|
I
|
|

|
|
{
|
|

Bending moment diagram
F16. 77. Two beams, hinged together, on three supports.

bending moment at distance x from the left support? We isolate the
left portion of the beam and write the vertical equilibrium equation;

&ﬂ=R—me

or in words: the shear force equals the algebraic sum of all the upward
forces and reactions to the left of the section (page 69) When the
forces are discrete, the sum is written as Z; when they are smoothly
spread out, we write [ instead. The above formula holds true whether
w is constant or variable with z (Fig. 81). For the same left-hand
portion we now write the moment or rotational equilibrium equation:

—M(z) = Rx — Li-oxywdy
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In the latter integration, x is a constant, because we keep the section
at a definite point z, and hence we have to write a new letter y for the
variable, which is the distance from the load element to the cut.
The load element then is dy. Again the above expression holds for
constant as well as for variable w; in the latter case we have to express
w as a function of y, because z is constant during the integration.
Only after the integration is completed do we make z variable again
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Fig. 78. Beam on two supports with uniform loading.

and consider the bending moment as a function of the location z of
the cut or section in the beam.
For the case of constant w, as in Fig. 78, the integrations are simple
and lead to
wl

—S(x)=R—w:c=7—wx
_ _ Y wl _ wr?
M(x)—Rz w—z—o-—?—x T

which results have been plotted in Fig. 78. First we notice that the
bending-moment diagram is a parabola, and we remember that by
Fig. 69 the shape of a cable loaded by a uniform load also is a parabola.
This should not surprise us because we know from Fig. 74 that the
bending-moment diagram is the same as the funicular diagram of a
rope under the same loading, and of course this relation is just as true
for distributed forces as it is for discrete ones.

The next thing we notice is that the above expression for the shear
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force can be derived from that of the bending moment by differentia-
tion. This is an important relation, which will be shown to be gen-
erally true:

The ordinates of the shear-force diagram equal the slopes of the
bending-moment diagram, or

_dM
T dx
To prove this consider an element of beam of length dx (Fig. 79),
between locations z and z + dz, qdx
the coordinate increasing to the lu
right. At location z we call the S
shear force S and the bending M MeaM
moment M; then at the other
location we write S 4 dS and StdS

M + dM. The beam section is

loaded with ¢ dz, and when dz is o x dx

short enough’ w can be consid- Fia. 79. Vertical equilibrium of a beam
ered constant. Also, we assume  element requires that w = dS/dz; rota-
that there is no concentrated tional equilibrium leads to S = dM /dzr.
load P acting on this small piece of beam, so that ¢ dz is a small

quantity. Then we write for the vertical equilibrium

ds

d8 = qdz or =%

The ordinates of the loading diagram equal the slopes of the shear-
force diagram. The rotational equilibrium or the moment equation
about the center point of Fig. 79 gives

M- (f+aM) + 8%+ +anE =0

or
dS dx
2

dM = Sdz +

The last term is small of second order and may be neglected, so that
S = dM /dx, which proves our contention.

These relations between slopes and ordinates are generally true,
and it is now useful to reexamine Figs. 71, 76, 77, and 78 with these
relations in mind. Concentrated forces must be considered as locally
infinite loadings w, which thus give locally infinite slopes in the shear
diagram and sudden finite changes in slope in the bending-mo- .ent
diagram.
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As a next example, consider the beam of Fig. 80, loaded with a
uniform load along only half its length. First, for calculating the
reactions, we replace the distributed load by its resultant wi/2 at the
quarter-length point. This leads to bearing reactions wl/8 and
3wl/8. The shear-force diagram has zero slope in the left-hand part
and has slope w in the right-hand part; its end values must equal the
reactions. After the shear-force diagram has been thus constructed,

l¢ v mm e f R ittt >‘
: ! :
Lt Y |gzg
I Z 42
|
!
! Shear
I force
HI l | y| diagram
|
.
]
y s,
| IHl Y Bending
moment
D I o // diagrom
7/
| >
BV

Fig. 80, Partially loaded beam on two supports.

we proceed to determine the bending-moment diagram by using the
theorem S = dM/dz. In the left half, between A and D, the slope
of the bending-moment diagram is constant, equal to the shear force
wl/8, so that in the middle of the beam the bending moment is

wll _ whk

82 16
Next we start from the other end B, where the ordinate of the shear
diagram is three times that at A, with the opposite sign. The slope
of the bending-moment diagram then must be opposite in sign to the
slope at A and three times larger. Plot point E, making CE = 3CD,
and join B with E. This must be the slope at B. Since between B
and C the shear diagram is straight, the integral of it, or the bending
moment, must be a parabola or z? curve. Draw a parabola between
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B and D, tangent to BE at B and tangent to AD at D. (Why is the
curve smooth at D, and why does it not have a sudden change in
slope there?) After the parabola is drawn we notice that it must
have a zero slope at F, where the shear force is zero. Since F is such
an important point, where the bending is at its worst, we will calculate
the bending moment there. From the shear-force diagram we see that

1,11 5
r=5+tz3=g!

Isolate the piece of beam BF of length 34l. On it are acting the end
reaction 3wl/8 and a distributed loading 3wl/8, of which the center of
gravity is halfway or at 3//16 from F. Taking moments about F,
the bending moment there is 9wl/128, or 12.5 per cent greater than at
C. The same result can be obtained by isolating the left section AF,
which is left as a useful exercise to the reader.

An error into which most beginners fall at one time or another is
the following. Suppose we ask for the bending moment at some point,
say at F. In the top diagram of Fig. 80 we replace the distributed load
by its resultant through the center of gravity as shown. Then the
bending moment at the 51/8 point F is the left reaction wl/8 multiplied
by the distance AF. Checking from the right, we isolate the piece
FB, and the moment at F is the end reaction 3wl/8 multiplied by its
distance 3!/8 less the load wl/2 times its distance wl/8. This checks
the answer from the left, but both calculations are wrong. At which
point in the argument has the error been made?

As another example, consider Fig. 81, a beam on two supports,
loaded with a uniformly increasing load intensity. First let us try to
construct the two diagrams with as little calculation as possible. The
center of gravity of the loading diagram is at two-thirds distance, so
that the end reactions are P/3 and 2P/3 in which P is the total load
of the triangle diagram. The shear forces at the two ends A and B
then are P/3 and 2P/3, and the intervening curve is the integral of a
straight line, or a parabola. Near the left end A the distributed load-
ing is small, practically zero; therefore, the shear force hardly changes;
the tangent to the curve is horizontal at A. At the other end B the
intensity of the loading ¢ is 2P/l (why?), or written differently, 24P
divided by 1/3. The height BC is 24P; take BD = 1/3, and the con-
necting line CD must be the tangent to the shear diagram at C.

Next we try to find point £ where the shear is zero. That point
is 80 located that the triangular load from A to E just balances the
left reaction P/3, or in other words, E is so located that the area of
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the partial triangle to the left is one-third of the area of the entire
triangle. Areas of similar triangles are as the squares of their bases,
go that z2/1? = 14 or z = 0.578l. With the three points 4, E, and
C and with two tangent directions, the curve can be nicely drawn.

Next we proceed to the bending-moment diagram, which must be
gero at both ends. We lay off GH = PIl/3 at the right and join F
with H. The slope of FH is P/3, and therefore FH is the tangent to
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Fi1G. 81. Beam with triangular loading.

the diagram at F. The slope at G should be twice as large, and with
the point L at mid-span we construct the tangent GL. Finally the
intervening curve should have a horizontal tangent at E, which enables
us to sketch it in quite nicely.

An algebraic calculation of the maximum bending moment at E
proceeds as follows. Take a section at distance z from the left bear-
ing. The area of the partial loading triangle at left is Px?/1?, and its
center of gravity is at 2z/3 from the left end or at 2/3 from the cut.
Thus the bending moment at z is

P 22z Pz z?
5’"?1’5—‘3‘(1—72)
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We notice that this correctly gives us zero bending moment at the
other end x = [, and it is thus the equation of the bending-moment
diagram. To find its maximum, we differentiate and set equal to

zero
_P z? Pz 2z

0—5(’- ‘ﬁ)“?'ﬁ
or
2
V3
Substituting this into the expression, we find for the maximum bending
moment at E

Pl 1 2
Mg=—-(1—-35)=-—-—""1Pl=0128P
* 3\/5( 3) 93

We end this chapter with an application of the funicular diagram
to the graphical determination of the location of the center of gravity.

Fia. 82. The funicular diagram construction as a means for finding the center of
gravity.

This construction is useful only when the body has a complicated
shape that is not readily reducible to a combination of rectangles,
triangles, and circles, and therefore is used but seldom in practice.
It is mentioned here primarily because it is a good and instructive
application of the principles. The (two-dimensional) body shown in
Fig. 82 is first subdivided into a suitable number of strips. A few
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strips give little work and poor accuracy; more strips give more work
and a correspondingly better return. In the example, ten strips are
chosen. We draw parallel dotted lines through the centers of gravity
of the individual strips and determine the weight of each strip by
estimating or by planimeter measurement or by any other suitable
method. The weight of the body is thus divided into ten partial
weights, and the center of gravity lies on the line of action of the
resultant of these ten forces. The funicular construction of this
resultant is done by the method discussed with Figs. 65 and 66 (page
62). To determine the center of gravity, a second similar construction
is required in a different direction, preferably perpendicular to the
first direction. In actual practice, it is usually simpler and more
accurate to make a table of the weights or areas of the ten strips of
Fig. 82, listing them in a vertical column, as shown below. If the

No. Area Product
"
1 4.10 4.1
2 5.25 10.5
3 6.30 18.9
4 7.20 28.8
5 7.10 35.5
6 6.85 41.1
7 6.45 45.2
8 5.90 47.2
9 5.40 48.6
10 4.35 43.5
Sums 58.90 323.4

widths of the strips are made equal, as is usual practice, we may multi-
ply each area with its order number, as in the third column. Each
item in that column then represents the moment of the strip area
with respect to a point O, one strip width to the left of area No. 1.
Adding the ten areas and adding the ten moments in the table gives
us the denominator and the numerator of Eq. (2) (page 33). Thus
the center of gravity is to the right of point O by 323.4/58.90 = 5.50
strip widths, which means that it is on the dividing line between strips
No. 5 and No. 6. This is an example of numerical integration of a
case in which the “functions’ are given on a blueprint only and can-
not readily or accurately be reduced to analytical form.
Problems 103 to 109.



CHAPTER VI
FRICTION

19. Definition. Friction is of far greater importance in statics
than is often realized. Without it no ladder could stand against a
wall, a two-legged animal could hardly remain upright, and a large
number of structures would become unstable. Most simple one-
or two-family houses are set loosely on their foundations and depend
on their weight and friction to stay there. Without friction, such
houses would be blown away by the slightest breeze. Worse than that,
without friction, all houses, animals, and men who were not standing
on solid rock, but on sand, clay, or dirt, would sink down in it until
Archimedes’ law restored equilibrium through buoyanecy. This is so
because the solidity we observe in sand or dirt is a consequence of
the friction between the individual grains, which prevents these
grains from sliding over each other freely. At some depth below the
surface of the earth there is considerable pressure in the soil, because
the weight of the upper layer has to be carried. With this great
pressure the friction forces between the grains are large, and the con-
glomerate of grains acts like a solid body. This can be illustrated by
a beautiful experiment, in which a small rubber bag is partially filled
with sand and closed airtight with a screw cap. The bag is soft to
the touch, like a tobacco pouch, because there is no pressure and hence
no friction between the grains of sand. When the air is evacuated
from the bag by a small hand pump, the atmosphere gets a chance to
press on the bag from the outside (with 14.7 lb/sq in. pressure).
This presses the sand grains together and causes friction between them,
with the result that the bag becomes as hard as a rock and can be used
spectacularly to drive a nail into wood.

Another illustration is the behavior of sand on the beach. We
observe that dry sand is soft to the touch, and we can easily dig a
foot intoit. The same is true for the sand when completely submerged
under water. But the just-dry beach close to the water’s edge is
hard, and we can ride a bicycle on it. This is caused by the fact that
there is water between the sand grains just under the surface and that
this water, by the action of capillarity, pulls the sand grains together.
Thus the sand acts as if it were under the same pressure as at great

83
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depth and becomes quite hard on account of the friction between the
grains.

The clear understanding gained during the last thirty years of
the relationship between capillarity and friction forces and its conse-
quent application to conglomerates of grains of various sizes (gravel,
coarse sand, fine sand, silt, clay) has given rise to a new subject in
engineering, known as “soil mechanics.”

So far we have talked about “friction” in the commonly under-
stood sense of that term without being precise about it. Now we

(6)
Fia. 83. The definition of friction force F, normal force N, and total force P.

turn to an exact definition. Consider in Fig. 83 two bodies in contact
with each other, either along a flat area (Fig. 83a) or at a point of two
curved surfaces (Fig. 83b). In both cases let P be the force exerted
by one of the bodies (the lower one) on the other (the upper one),
and let this force P be resolved into components, normal and tangential
to the surface element of contact. Then N is called the normal force,
F is called the friction force, and P is called the “total force” or the
contact force. Thus the friction force is defined as that component of
the contact force between two bodies which lies in the tangent plane
of the contact point.

In the case of statics, z.e., in the absence of motion, particularly of
tangential sliding motion between the bodies, innumerable experiments
during the past two centuries have shown that the maximum obtain-
able friction force for two given bodies is approximately propor-
tional to the normal force, or in a formula,

F < fN 3
where f is known as the coefficient of friction. We notice that the
words “maximum obtainable” appear in the statement of the experi-

mental law and that consequently the symbol < appears in Eq. (3)
instead of the symbol =. This is in accordance with common observa-
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tion. In Fig. 83a, let the normal force N be held constant, say at 100
Ib. Then the friction force in the condition of equilibrium at rest
may be anything (including zero) up to a certain limit, say 30 1b. The
law states that if the friction force F surpasses the limit fN' = 0.3N,
then no equilibrium is possible, and the bodies start sliding over each
other. What happens to the friction force after slipping has started,
during relative motion between the bodies, is another matter and is
not of our concern when studying statics.

For the friction force during motion there are two principal laws, depending
on whether we deal with “dry friction’ or with “film lubrication.” The law
for dry friction is the same as Eq. (3), except that the < symbol is replaced
by the = symbol, or in words, with dry friction during relative motion, the
friction force equals f times the normal force, independent of the velocity of
slip. The law for film lubrication, such as applies to oil-lubricated bearings,
is entirely different. In that case the friction force grows with the velocity
of slipping and is more or less independent of the normal load N. The
studyof this law belongs to the field of fluid mechanics. The law of dry
friction applies with tolerable accuracy wherever no oil film develops, even
in the presence of a lubricant. Two metal surfaces with cup grease between
them obey the law of dry friction, with a small value of the coefficient f.

The law of static friction, Eq. (3), was discovered and stated in
the dim past; it can be found, for example, in a physics textbook
printed in 1740 with elaborate tables of numerical values of f.1 How-
ever, it is now usually referred to as Coulomb’s law, and dry friction is
usually called Coulomb friction (to distinguish it from viscous fric-
tion, which occurs in oil films), after a book on machine design? that
had widespread influence in its day.

The numerical values of the friction coefficient f vary over a wide
range and depend not only on the materials of the two bodies but also
on the roughness of their surfaces and on the degree of cleanliness.
The smallest practical coefficient of dry friction is about 0.02 (2 per
cent) for smooth, well-greased metal surfaces, while on the other side
of the range, an automobile tire on a dry concrete road has a friction
coefficient of about 1.00 (100 per cent). Other intermediate values
for all sorts of materials can be found in handbooks? but have to be

1 4 A Treatise on Natural Philofophy for the Ufe of Students in the Univerfity,”
by Pieter Van Musschenbroek, translated into English by John Colson, Lucafian
Professor of Mathematics in the Univerfity of Cambridge, 2d ed., London, 1740.

? “Théorie des Machines Simples,” by Coulomb, Paris, 1821.

3 In Marks’ “Mechanical Engineers’ Handbook,” 4th ed., p. 233, we read: ““ The
static coefficient of friction between metal and oak (dry) is 0.62; for steel on steel
0.15.” In John Colson’s “Treatife” of 1740, cited above, we read: “ A steel axis
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considered only as average values, subject to considerable variation
depending on circumstances.

The simplest way to determine experimentally the value of a
coefficient of friction is by means of an inclined plane (Fig. 84). The
plane is lined with one substance and
the block on it with the other sub-
stance. The angle of inclination of the
plane is slowly increased until the block
starts to slide down. From the angle
a at which this occurs, the value of f
can be determined. On the block of
Fig. 84 there are three forces acting as
shown. The weight passes through the
center of gravity, and hence the reaction
force from the plane also passes through that point. It is resolved into
N and F, and from the equilibrium conditions, before sliding, we see
that

Fia. 84. Equilibrium of a block on
a rough inclined plane.

N = W cos a, F =Wsgn a, F=Ntana

The angle between the total contact force W and its normal component
N, when sliding just starts, is called the ‘“friction angle,” which in this
case equals the angle of inclination of the plane. Thus

f=tan o

The friction coefficient equals the tangent of the friction angle, which
again is equal to the tangent of the angle of inclination of the plane.
If f = 1.00 between a rubber tire and a concrete road, it means that a
car with completely locked brakes can stand on a 45-deg incline and
that when the incline becomes slightly steeper, the car will start sliding
down with locked wheels.

Problems 110 and 111.

20. Applications. a. Tipping or Sliding? Consider again the block
of Fig. 84. In the drawing it is shown low and squat, but suppose it
had been higher and with a shorter base. The question arises as to
whether with increasing angle «, it will not first tip over about the
forward edge A before it slides down. The answer to the question is
almost immediately visible from the figure. It is seen that the weight

being dry, and received into 2 bearing of guaiacum wood, the friction to the weight
is as 1 to 314. The same axis received into brafs, anointed with olive oil, the
friction to the weight is as 1 to 7%{5.”
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force W intersects the base at point B. This then must be the point
through which the resultant of the contact forces must pass. If
point B lies higher than 4, or in other words, if B is in the base of the
block, this is possible without trouble. However, if B lies below 4, or
outside the base of the block, the only way in which distributed normal
forces on the base of the block can give a resultant at B is by being
partially upward-pushing and partially downward-pulling. Thus,
for equilibrium, it would be necessary for the inclined plane to pull
down on the block near the rear con- Y P
tact point C. In the absence of this A yad
pull, no equilibrium is possible. Let GK\
2
B

>

e~ P>

b be the base length of the rectangular

block, and let & be its height. Then

the reader should derive that for WL

b > h tan o, point B lies within the . L

base, and for b < h tan «, it lies out- féﬁhtssé_ﬁsﬁ’::f nogf ?ilxs;e—w:lfl 312

side the base below A. Thus if b/h resultant E intersects the ground to
. the right of C.

> tan @ or b/h > f, the body will

slide down first upon increasing the inclination «; but if b/h < f, it

will tip over about point A before it slides.

A similar problem is shown in Fig. 85, where a packing case of
dimensions b and h, with its center of gravity in the center, is sub-
jected to a horizontal pull P at the top. When P is slowly increased,
the resultant of P and W (which
must be equal and opposite to
the contact force) turns gradually
about point A4, increasing the
angle a. Nothing will happen
until either tan « reaches the
value f (when the case will start
sliding) or the point B, where
the resultant intersects the base,
moves to the right of point C
(when the case will tip forward).
Verify that for f = 0.6 or 60 per cent friction the base must be at
least 1.2 times the height to prevent tipping.

b. Pulling a Block up the Inclined Plane. In Fig. 86 let a weight
W1 be held in equilibrium on an inclined plane by a second weight
W, and let us ask for what value of W, the weight W will just start
sliding up and for what value W; it will just start sliding down.
Assuming no friction in the pulley wheel, the rope tension T equals

—

\
Az

Fia. 86. A block sliding up an inclined
plane.
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W, (page 21). Other forces acting on the block are its weight W, and
the contact reaction from the incline. We resolve W, into its normal
(W1 cos o) and tangential (W, sin a) components and resolve the con-
tact force into N and F. Then the equilibrium in a direction normal
to the plane requires that N = W, cos a, and the equilibrium tan-
gential to the plane requires that

Wy = W,sina+F

where F is the friction force from the incline on the block, counted
positive down the plane. If the block is just ready to slide up the
plane, we have F = fN = fW; cos a, so that

W, = Wisin a + fWicos @ (just going up)

For downward motion the direction of the friction force is reversed,

so that
Wy = Wysin a — fW; cos o (just going down)

Now let us adjust either o or f so that without pull in the rope (W; = 0)
the block is just ready to slide down. Then the two terms on the
right of the last expression cancel each other by being equal, and the
pull W, required to pull up thus becomes

W2 = 2W1 sin [+

or twice as large as would be required with no friction at all. The
friction force when just going up is directed downward, and the fric-
tion force when just going down is equally large and directed upward.
Thus when for W, = 0 the weight W, is just held by friction, we need
twice that friction force in rope tension to pull up, once to overcome
friction and once to overcome the gravity component W sin a.

This long argument on a simple case has been made so elaborate
because it is the simplest manifestation of a general proposition as
follows:

A continuously operating hoisting mechanism that is self-locking
by friction cannot be more than 50 per cent efficient when hoisting.
The term “self-locking”” means that the load on the hoist does not
slide down by itself when the upward pull is removed. Efficiency is
defined as the ratio of the pull required to hoist without friction to the
actual pull with friction. The phrase *continuously operating” is
inserted to exclude intermittently operating devices, containing
pawls or similar elements. Other applications of this proposition
will be discussed presently: the screw jack and the differential pulley,
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while in Fig. 92 (page 98) an intermittently operating hoist is shown in
which the efficiency is better than 50 per cent.

¢. The Screw Jack. The principle of operation of a screw jack can
best be understood by considering a modification of Fig. 86. In
that figure let the angle « be small, of the order of 1 deg, let the block
be very long (100 in.) and low (14 in.), let the thickness of the block
and the incline perpendicular to the paper be small, say Y4 in., and
let them both be made of a plastic, easily bendable material. Now

F1a. 87. A screw jack operates on the principle of the inclined plane.

we cut and throw away most of the inclined plane, keeping only a
strip of }4-in. width and 100-in. length. Then we roll up the whole
assembly to such a radius that the consecutive windings show a small
clearance on the top side of the block, as illustrated in Fig. 87a.
Finally, we cast the wound-up inclined plane into solid material on
the outside, forming a nut, and we cast the wound-up block into solid
material on the inside, forming a square threaded screw.

Now we apply a torque of moment M to the screw and a sufficient
counter moment to the nut to preserve equilibrium, and we also put a
load P on the screw, as shown in Fig. 87b. This load P and torque M
are transmitted by the screw to the nut, and Fig. 86 can be considered
to be a small element of it. The forces transmitted by the block or
screw element (Fig. 86) to the nut or inclined plane are W and T as
shown, or W — T sin « vertically and T cos « horizontally or tangenti-
ally. The vertical forces of all elements in Fig. 86 add up to P in
Fig. 87, so that
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P=2Z(W,— Tsina)

The horizontal forces cancel each other, as they are wrapped around
several circles, but they all have a moment about the center line.
With r, the (pitch) radius of the threads, we have

M = Z(Tr cos a)

From the previous example, we can now take the relations between T
(which is W,) and W), and substitute. This gives

P =ZW,(1 —sin? @ F fsin « cos a)
M = ZWir(sin « cos o £ f cos? a)

where the upper of the two signs belongs to ““just going up” and the
lower to “just going down.” We divide these two equations together
to eliminate W, (which is only an auxiliary quantity for our screw)
and observe that a and f are the same for all elements of the screw,
so that the = signs can be left out.

M/r sinat fcosa
P cosa F fsina

again with the upper signs for “just going up,” the lower ones for
“just going down.” The quantity M/r is the tangential force that
would have to be applied to pitch radius to hold the load P. In the
absence of friction, this turning force M/r is considerably smaller
than P. Thus, without friction a very large load can be lifted with a
small torque. For self-locking, the ‘““just going down’ torque M
should be zero or f should be tan «. Since tan « is only a few per cent
by the geometry of the screw and the friction coefficient in the threads
cannot be made so small, all practical screw jacks are self-locking.
Suppose we just have self-locking, 7.e., the jack is just ready to run
down by itself without torque. What torque must we apply to just
pushitup? To find that we divide the above equation by cos a,

M/r _ tana +f

P ~IFftana_ @Eh)

where f = tan 8, and 8 is the angle of friction. For self-locking
o = 8, or the angle of friction equals the angle of inclination. To
push up against this friction,

]‘%ﬁ = tan 2«
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To push up (or down) without any friction,

M/r

P = tan a

which is less than half of tan 2«. Thus the torque necessary to hoist
with self-locking friction is more than twice the torque to hoist with-
out friction, or the efficiency is less than 50 per
cent.

d. The Ladder against the Wall. In Fig. 88
let a ladder of length [ rest against a vertical
wall at angle a. Assume the friction coeffi-
cient on the ground equal to that on the wall.
Let a man climb up the ladder. How far can
he go up before the ladder slips? For simplic-
ity, let the weight of the ladder be neglected,
or rather let P represent the resultant of the
man’s weight and the ladder’s weight. If we lf:g(ier 88. The sliding
are just ready to slip, the friction forces are ’
fN. and fN,, where N, and N, are the unknown normal reactions.
The direction of the friction forces is against that of impending
motion. The equations of equilibrium are
Vertical forces:

o

Ni+fN, =P
Horizontal forces:
fN1= N,
Moments about bottom:

Px cos @ = N:lsin a + N2l cos «

If f is given, the three unknowns in these three equations are Nj,
N, and the height 2. Solving for x gives

%=1_{_f2(tana+f)
which is the answer for all values of « and for all values of f. As an
example, consider f = 1, which is reasonable for rough ground.
Verify that if « is 45 deg, the ladder will slip when the load P just
reaches the top.

e. The Buggy Wheel. Figure 89a represents one wheel and half
the axle of a two-wheel horse-drawn buggy. The non-rotating axle
is shown with a square cross section in the portion between the wheels,
while the ends of that axle, which fit in the wheel bearings, are round.
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The downward force W shown on the half axle in the figure equals
half the weight of the loaded buggy less wheels, while the force P in
the figure represents half the horse’s pull. The wheel of weight w
rests on the ground and feels an upward push, which is equal to W + w
because of vertical equilibrium of the combined wheel and half axle.
It also feels a horizontal force, which must be equal to P for horizontal

T
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F1a. 89. The buggy wheel.

equilibrium. It is noted that the buggy load W is shown off center; |
this must be so for moment equilibrium: W3 = PR. The force P on |
the ground is furnished by friction between the ground and the wheel -
rim; it will be seen later that P is very small with respect to W (the
lucky horsel), so that P/W is certainly smaller than f, and the wheel
will not slip on the ground. We want to calculate the horse’s pull P
when there is friction in the axle bearing. Figure 89b shows the axle
by itself with the forces acting on it, and Fig. 89¢, the wheel itself.
The bearing forces X and fX require some explanation. First, the
normal force X is unknown, and it is shown at an unknown angle a.
(Try to establish equilibrium with a purely vertical X and find that it
cannot be done.) Second, the friction force equals fX and is not
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smaller than fX, because we assume that the horse pulls hard enough to
just start the buggy, so that there is impending relative motion in the
axle bearing. Let the axle diameter be r and the wheel diameter R.
We now write the equilibrium equations for the axle

$ W =Xcosa-+fX sina
o P =fXcosa— Xsina
[ Ws=fXr

For the wheel the vertical and horizontal equilibrium equations are
the same as for the axle, while the moment equation ig

PR = fXr

Thus we have four equations, and, counting the unknowns, we also
find four: X, P, §, and a. The rest of the problem is algebra. We
do not particularly care what X, 3, and « are, but we are interested in
P. From the last equation we calculate X and substitute it into the
first two equations, omitting the third equation. From the first two
we calculate sin « and cos « separately, then eliminate o by squaring
and adding, since sin? & + cos? @ = 1. This leads to the result

P _ fre _.fl\/_—_—l—_
W NA+PHRE=7r 'ERNT+F - Pr/R?

Now, in a first-class buggy R >> r, and f < 1, so that the square root
hardly differs from unity, and

% =f —% (approximately)

The moral: In order to keep the horse kappy, we must grease the axle
well and use a large-diameter wheel with a small-diameter axle. For
a much shorter derivation of this result by the ‘“method of work,”
see page 149.

The actual pull of the horse is larger than is indicated by the above
formula. We have assumed a purely round wheel on a purely straight
road, which can be true only for infinitely hard materials in wheel and
road. Actually, the wheel will flatten locally, and the ground will
be pushed in slightly, so that the wheel has to be “tipped”’ forward
over the leading edge of its ground contact in the manner of Fig. 85.
This effect is sometimes called *“rolling friction,” a bad misnomer,
because it has nothing to do with friction. The coefficient of rolling
friction is defined as the ratio of the tipping force to the weight. This
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tipping force has to be added to the above P in order to obtain the

total horse’s pull.

J. The Differential Hoist. In Fig. 25 (page 29) we studied this
device, assuming frictionless bearings, and came to the conclusion
that for a small difference between the radii 7, and r; the pull P could
be made a very small fraction of the load W. In the discussion that
now follows we shall call the difference in diameters § = 2r, — 2r;,

I
¢

Fia. 25, reprinted.

and we shall call D = 2r,, the larger diameter,
so that the smaller diameter 2r; becomes D — 4.
With this notation the result of page 29 for the
frictionless case is

P _ s

W 2D

Now let there be friction in the bearings; let
the coefficient f be the same for the upper and
lower sheaves; let the axle or journal diameter
d also be the same for both; and let the diameter
of the lower pulley wheel be D. Then, when
pulling down on P (Fig. 25) and hoisting up
on W, the two rope tensions T; and T cannot
be the same; T must be larger than T to
overcome friction on the lower pulley axle. Let
T'y=(W/2)+ X and T, = (W/2) — X, thus
satisfying vertical equilibrium of the lower
pulley. The friction force there is fW, and its

moment with respect to the center of that pulley is fWd/2. Then
the moment equation of the lower sheave is

w D w D d
(7+X)§‘(7—X)§=fwé

or, worked out,

_fwd
X =%

For simplicity we say that the normal force on the upper axle is W,
thus neglecting P, which is small. The friction torque there, then, is
the same as below, and the moment equation for the upper pulley is

P
2y

D -3

D d
3 ~Thigtivg
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which after working out becomes
d _fwad
D 2D%

where the last term is negligibly small compared to the previous one.
Thus,

Wb
P =5+ YW

W d
Po=g5+2W5

which for f = 0 checks our previous result. In case we should give
the pull P a small positive or a negative value so that the load goes
down instead of up, the entire analysis would be the same, except that
the friction would be reversed, which in the final answer results in a
change in sign of /.  (The reader should check this statement and never
believe the Printed Word.) Thus, for letting down,

Ws d
Pam = 55 — 2%W 5

For self-locking Paow. i zero, and the friction coefficient necessary to
give this value is

Jealtdock = ﬁi

In the usual chain hoists, § is about d/2, so that 12.5 per cent friction
will cause self-locking. Most differential chain
hoists, even well-lubricated ones, are self-locking,
except when specially provided with ball bearings
top and bottom. Suppose we do have just self-
locking; then the two terms on the right side of the
formula for Pawa (or for P,,) are equal: the first
term pulls the load up (or down) without friction,
the second overcomes friction, and we again verify
the rule of not more than 50 per cent efficiency for
a self-locking hoist.

g. The Pipe Wrench and the Automobile Brake.
Figure 90 shows a pipe wrench, which is a  __
tool for turning with considerable torque a g 99, The pipe
smooth round pipe on which no ordinary wrench wrench is a self-grip-
will take a bite. The only way to exert the P& device
torque is by friction, but friction requires normal force. The pipe
wrench is one of those hen-and-egg devices in which only the
deepest philosophy can decide which came first, the friction or the
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normal force. In Fig. 90 the upper jaw A loosely fits in the body
of the wrench, and it can be described with a little simplification
as being pivoted about point O. The wrench is placed on the pipe
and turned clockwise. When the wrench slips, the upper jaw at A
moves to the right with respect to the pipe. If there is no friction
or normal pressure at A, nothing happens; the wrench slips and does
not bite. But, if either the slightest bit of normal pressure or friction
appears, then the friction force on A will move A to the left in relation
to the lower jaw, and the pivot O
is 8o placed as to move the two
jaws closer together, increasing
the normal pressure and hence
the friction, which again moves
A farther to the left, thus leading
to an ‘“infinite’’ friction torque,
limited only by the strength of
the plumber, the wrench, or the
pipe. As soon as the wrench is
turned the other way, the sign of
the friction reverses; 4 moves to
the right relative to O, and the
wrench loosens up and slips.

Another application of this
self-gripping operation is shown
in Fig. 91, illustrating an auto-
mobile wheel brake in use before the present hydraulically operated
brakes superseded them. The two (non-rotating) brake shoes are
pivoted at the points A and are inside the rotating brake drum.
Two springs pull the shoes together and away from the drum.
When the brake lever is pulled to the right, the two compression
struts B press the shoes against the drum, stretching the springs.
Then friction appears, and the friction forces (for counterclockwise
rotation of the drum, as shown) are such as to rotate the shoes about
their pivots A so that more normal pressure and more friction are
generated. Thus a very large braking effect is produced with a
small effort on the part of the driver. The motion of the car really is
utilized to tighten the brakes. In case the car is moving in reverse
and the driver wants to use the brake, the effect is reversed, and he
has to pull all the more, proving again that in this world one seldom
gets something for nothing,.

F1g. 91. Self-gripping brake.
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h. The Automobile Friction Jack. In this device, which is self-
locking by friction an efficiency of much better than 50 per cent
is obtained by intermittently relieving the friction lock, so that the
mechanism during the hoisting period is really different from that
during the locking period. The heart of the machine is shown
in Fig. 92a, where a horizontal arm fits around a vertical stem,
either round or square in cross section. A load P is applied eccentri-
cally at distance a from the center of the supporting rod. This will
cock the arm so that it bears on the upper left and lower right corners
asshown. The normal forces N and the friction forces fN (for impend-
ing slip) are shown as they apply from the vertical rod on the horizontal
bar. Horizontal equilibrium requires that N = N, which has already
been assumed. Vertical equilibrium requires that fN = P/2. The
moment equation about point O (or about any other point) is Pa = Nh.
Then, substituting and eliminating the load P and the normal force N,

we find
h

T 2

for impending slip. If the coefficient of friction is less than £/2a,
the arm will slip down; for f greater than h/2a, it will be self-locking.
For the usual case f is, say, 50 per cent, so that the device is self-
locking when h/2a is less than 34 or when h is less than 4a. Only
when & is quite large with respect to the eccentricity @ will the bar
slip down; for most practical dimensions, it will stay put by self-
locking under any magnitude of the load P.

Now, consider the jack of Fig. 92b, made of a steel casting about
6 in. high, loosely fitting about a 34-in. round bar. The load P (from
an automobile bumper) is shown acting on the casting through a piece
for convenient rotatory adjustment. The load is transmitted through
A to B and from there by friction lock through the vertical rod down to
the ground G. The bar AB is of self-locking dimensions, as explained
above; on the other hand, the casting itself, between the points H
and L, constitutes a beam (Fig. 92a) in which h/a is large, so that it
can slip there. The only way in which the load P can be lowered is
by breaking the friction lock at B by loading the bar ABC so that the
resultant load lies very close to the center of the bar (a < h/4). This
is done by pushing down on C with a force almost equal to the weight
of the car P, by inserting a steel bar lever between C and the lip of
the casting 34 in. above it. Then the whole casting suddenly slides
down and lets the car down with it. To hoist the car up, the lever &
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is used, which is pivoted at F around a pin held by the casting. The
distance FE is about 16 in., and FD is about ¥4 in. When we pull up
at K with unit force, we consequently push down on D with a force
of 32 units. The point D is a fixed point by friction lock of the short
horizontal bar D. The force at F is 33 units and is down on the lever

XXX XXX

Fig. 92. The auto-bumper jack, being an intermittent device, is a self-locking hoist with
better than 50 per cent efficiency.

from the casting or up on the casting from the lever. During the
upward pull at E we thus exert a force, 33 times larger, upward on
the casting at F, which will lift the whole casting with the automobile
bumper P. The friction lock at D holds, but the friction lock at B
is broken, because A moves up with respect to B and relieves the
slight cocking angle shown. At the end of the upward stroke, the
casting has been lifted, and D is still where it was before, so that
the lower spring S is compressed, and the upper spring Sy is elongated.
Letting down at the end E relieves the load at D. The friction lock
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at B takes over immediately, and the arm D, totally unloaded, is
pushed up by the two springs Sz and Sy to its mid-position shown.
Thus, by intermittently carrying the load P by friction lock at B
and at D, we avoid pushing against the locking friction during the
hoisting period, and the efficiency of the device is close to 100 per cent.
i. The Rope and Hoisting Drum. Figure 93a shows a hoisting
drum, rotating in a counterclockwise direction, over which a stationary
rope is slung. On account of the friction between the moving drum
and the steady rope the rope tensions T and T at the two ends are

@? ,wi poar

(a)

To
Fig. 93. The rope on the capstan.

different, and we now propose to study the relations involved. The
rope tension T varies as a function of the angle ¢ from a minimum
T at ¢ = 0 t0 a maximum T, at ¢ = «, and about all we can say of
the manner in which T changes with ¢ is that it must be in a continuous
way. Then it is appropriate to study the equilibrium of a short
element of rope, an infinitesimal piece r de at an arbitrary location o,
as shown in Fig. 93b. The forces acting on this element are the ten-
sions T and T + dT in the rope, and the normal and friction forces.
The amount of normal force will be proportional to the length of the
element and hence can be written Nor dg, where N, is the normal
pressure per inch of periphery. The friction force then is fNor do,
because there is relative motion. In order to write the equilibrium
equations, we resolve these forces in two perpendicular directions,
which we can choose freely. In order to write the equations as simply
as possible, we choose the radial and tangential directions. The
radial equilibrium requires that

T sin‘-iz‘—" + (T + dT) sin

Since dg is very small, we have sin dg/2 = dp/2. Then of the four

d
-210 = No?’dgo



100 FRICTION

terms in this equation, three are small of the order of dy, while the
fourth one d7T' de/2 is small of the second order, and hence is neglected
with respect to the other three. Thus, after dividing all terms by
de, we have

T = N o

In writing the equilibrium equation in the tangential direction, we
encounter cosines of small angles, which differ from unity only by
quantities small of the second order. (Readers who do not see this
immediately are advised to look at the Taylor series development of a
cosine.) Thus,

aT = fN or d¢

Between the two equations of equilibrium we eliminate N, and find

aT
T=f de

This is the differential relation between the rope tension T and the
friction coefficient f for a small piece of rope, and from it we find, by
integrating both sides,
log, T = fo + constant
T = gfetomstant
T = Cel*

The constant of integration has a simple physical interpretation. At
one end of the rope-drum contact we call ¢ = 0 and then ef* = 1,
so that C is seen to be the rope tension at ¢ = 0, which we will call
To. Thus

T = Toef 4

gives the tension in the rope at any angular distance ¢ from the first
contact point where the tension is To. The tension rises like an
e function with the angle, and this rise is extremely rapid. As an
example, let f = 0.5; then the table below shows the ratio of the rope
tensions on the two sides of the drum for various angles.

¢, radians | Times around drum T/Te
/2 ¥ 2.19
L 4 4.8
2 1 23.1
4x 2 535.
6x 3 12,392.
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The large magnifications T/T's that occur when the rope is slung two
or three times around the drum are used for handling cargo on ship-
board. A drum of about a foot diameter is rotated at constant speed
always in the same direction by a steam or electric drive, and the end
of a hoisting rope is wrapped around it several times. A man at the
T end of the rope can hoist very heavy loads by pulling on the rope by
hand, and similar heavy loads can be let down by slacking off on the
rope. 5
Problems 112 to 123.



CHAPTER VII
SPACE FORCES

21. Composition of Forces and Couples. In Fig. 94 we see three
forces Fi, Fi, F3, drawn in full lines, all intersecting in a common
point O, but not lying in the same plane, and with arbitrary angles
(not equal to 90 deg) between the forces. The resultant of these
three forces is the diagonal of the parallelepiped with the three forces
as sides. This can be shown on the basis of the axioms of pages 4 to 6

3

2

5
F16. 94. The resultant of three concurrent forces in space.

as follows: Take two of the three forces, say F; and F3, and as they lie
in one plane, we can form their resultant R1, by the parallelogram con-
struction. Then we consider the plane passing through R, and
through F; and find the resultant of R1. and F; by the parallelogram
construction. Thus we arrive at Ri.;, being the diagonal of the
parallelepiped. The order in which this composition is performed is
arbitrary; we could just.as well have performed either of the following
sequences:

Fy+ F3 = Ry, Ris+ Fy = Rins
or

F2 + F3 = Ry, R + Fy = Rias

102
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An important special case of this construction occurs when the angles
between Fy, Fs, and F3 are all 90 deg, as in a rectangular Cartesian
coordinate system. Then the three forces are usually called X, Y, Z,
and their resultant R is expressed by

R=vETVF2

The resultant of more than three concurrent forces can be constructed
by first forming the resultant of any three, then adding the fourth and
fifth to it, ete.

From Fig. 94 it can be conversely concluded that any single force
in space, say Ri»;, can be resolved into components along three
concurrent lines in arbitrary directions, provided the three lines do
not lie in one plane. On page 9, in discussing Fig. 4, it was said that
a force could be resolved into fwo components in one plane with the
force. If, in the more general three-dimensional case, we happen to
pick two of our lines in the same plane with the force to be resolved,
while the third direction must be outside that plane, we simply say
that the component of our force in that third direction is zero.

On page 13 a definition was given of the moment of a force about
a point O in its own plane. For space forces this definition has to
be generalized appropriately. In the first place, the idea of ‘“moment”’
is a turning effort, and we do not turn about a point but rather about
an axis. In the previous definitions we really meant a rotation about
an axis or line passing through O in a direction perpendicular to the
plane about which we were talking. In three dimensions then, what
is the moment of an arbitrary force about an arbitrary axis or line?
The line of action of the force and the axis of rotation in general will
not be perpendicular to each other, as they are in the plane case.
But we always can resolve the force into a component parallel to the
moment axis and into another component perpendicular to the moment
axis. 'The first component, by our physical conception, does not try
to rotate the body about the axis, and only the second component does.
But this second component is situated just as is the force in the two-
dimensional case of page 9. Thus we define

The moment of a force in space about a line equals the magnitude
of the component of that force perpendicular to the line multiplied
by the shortest, i.c., perpendicular, distance between the moment line
and the line of action of the force.

From this definition it follows that the statement of Varignon’s
theorem on page 14 is true also in three dimensions, provided that we
read “line’’ instead of “‘point.”
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The moment of a force about a line in space is equal to the sum
of the moments of the components of that force about the line.
For the proof of this statement, consider a plane through the point
of action of the force, perpendicular to the moment axis. The force
and all its components are now resolved into components parallel to
the moment axis and into components lying in the afore-mentioned
plane. The parallel components have no moments, and for the com-
ponents lying in the plane, Varignon’s two-dimensional theorem of
page 14 holds, which proves the proposition. A further generaliza-
tion of this theorem to non-intersecting force components is men-
tioned on page 136.
Next we turn our attention to couples. In Fig. 13 (page 17) it
was seen that the two forces consti-
tuting a couple can be changed in
magnitude and in direction without
affecting the value of the couple;
/ d) / in other words, the turning effort
or moment is the same whether we

have two large forces close together

Fia. 95.

or two small forces far apart, or
whether these forces point east-west or north-south. The only
thing that counts is the moment of the couple and the plane in which
it acts. In Fig. 13¢, the couple was represented as a curved arrow in
the plane; for what follows it is more convenient to represent it by a
straight arrow perpendicular to the plane (Fig. 95). This straight
arrow is given two heads to distinguish it from a force; it is given a
length measured in foot-pounds, proportional to the moment of the
couple, and the direction of rotation of the couple is related to the
sense of the straight arrow by a right-hand screw. From the discus-
sion of page 17 we remember that the couple can act anywhere in the
plane; therefore, the double-headed (couple) arrow can be displaced
parallel to itself to any location. This cannot be done with a force or
single-headed arrow. From Fig. 14 (page 18) we remember that if a
force is displaced parallel to itself, we have to add a couple, or

A single-headed (force) arrow can be shifted parallel to itself
only when a double-headed (couple) arrow is added to it, the double-
headed arrow being perpendicular to the force vector as well as to
the direction of the displacement.

We will now prove that double-headed (couple) arrows can be
added by the parallelogram construction just like ordinary single-
headed (force) vectors, or
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The resultant of two couples, lying in different planes, is repre-
sented by the vector sum (parallelogram sum) of the vectors of the
individual couples.

The proof is indicated in Fig. 96. Two planes are shown inter-
secting each other along the line AB at about 45 deg. In plane I a
couple FiF, is acting, and, for convenience, the forces F, have been
drawn perpendicular to the intersection AB and at unit distance (1 ft)
apart, which is always possible by virtue of Fig. 13. Likewise, in

(a)

Fig. 96. The addition of couples lying in different planes.

plane II there is a couple Fol'y, drawn in the same manner. It is now
possible to lay a plane through F; and F: and another parallel plane
through —F; and —F,. These new planes will be perpendicular to
AB and hence perpendicular to both plane I and plane II. The new
planes are shown in Fig. 96b, F; and F; lying in the plane of the paper,
and the line AB of Fig. 95a appearing as point 0. Now we form R,
the resultant of F; and F,, and also —R, the resultant of —F; and
—F,. The resultants R and —R again form a couple, lying in a new
plane through B, —R, and AB. So far we have drawn no double-
headed arrows. This can now be done in Fig. 95b. C, represents the
couple FiF;. It is perpendicular to the plane I in which the couple
operates, and since the moment arm of the couple is 1 ft, the length of
the double-header €, equals the length of the single-header F,. Simi-
lar properties hold for C; and for Cr. But now we observe that the
entire figure C1C:Ckr is the same as the figure F1F:R, turned through
90 deg. This proves the statement.

Now we can proceed to the problem of finding the resultant of a
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large number of non-intersecting forces in space. Take one force and
shift it parallel to itself until it intersects a second force. This intro-
duces a couple. Combine the two forces by the parallelogram con-
struction. Shift a third force parallel to itself to intersect with the
resultant of the first two. This introduces another couple. Proceed-
ing in this way we end up with one resultant force and a large number
of couples in all directions in space. These double-headed couple
arrows can be shifted parallel to themselves without punishment. We
do this and make them all intersect; then we add them by repeated

R

F1a. 97. A force and a couple is equivalent to a space cross of two forces.

parallelogram constructions. Thus,any number of space forces can be
reduced to a single resultant force and a single resultant couple. We
note that we say a force and a couple, not the force and the couple.
Having found the resultant force and couple, we can shift the resultant
force parallel to itself, introducing an additional couple, which can
be compounded with the original resultant couple. Then we have
again a force and a couple, different from the previous set.

There are two other simple forms to which an arbitrary system of
forces in space can be reduced: the “space cross’” and the “screw.”
The first of these is illustrated in Fig. 97, where the fully drawn vec-
tors B and Cr constitute the resultant. We replace Cr by two equal
and opposite forces F and —F in the perpendicular plane, and choose
F s0 as to intersect R as shown. Then the system is reduced to two
non-intersecting forces, namely, —F and the resultant of F and R.
Two non-intersecting forces are called a ‘‘space cross.”” Again this
can be done in millions of ways, because instead of F and —F, we
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could have chosen F’ and —F”, still in the plane perpendicular to C,
with a different, although equivalent, result.

Figure 98 shows the reduction to a screw, which is the combination
of a force and a couple of which the vectors are along the same line,
making the name quite descriptive. In Fig. 98 we resolve the resultant
couple C% into a longitudinal component C; along F and a cross com-
ponent C, perpendicular to F. Then we use
C. to shift F parallel to itself until C, is used
up in the process. For example, in Fig. 98,
F and C, combined are equivalent to a
force F located at a distance C./F below
the paper. Then we shift C; parallel to
itself (without punishment) until it coincides
with the new location of F. Thus a force
F and a couple Cr with an angle a between
them are equivalent to a serew of which the
force has the value F and the moment has Ce
the value Ck cos . The axis of the screw Fia. 98. Determination of
is found by moving F parallel to itself in a  f2° sorew Z%ﬁg:fent toa
direction perpendicular to the plane defined
by F and Cy through a distance Cy sin a/F. This construction is
definite: there is only one possible resultant screw.

Summarizing, we can say that an arbitrary system of forces in
space can be reduced to

a. Aforce and a couple (in an infinite number of ways), or

b. Two non-intersecting forces, z.e., a space cross (in an infinite
number of ways), or

c. A screw (in only one way)

If the force and couple of the secrew point in the same direction,
the screw may be said to be a right-handed one; for opposite direc-
tions, it is left-handed. If the force is large and the couple small,
the screw may be said to have a large pitch.

Now let us illustrate these theories with an example. Figure 99a
shows a space cross consisting of two equal forces at right angles to
each other. Where and how large is the equivalent screw? Let the
forces be F and the distance between them a. First we make the
forces intersect by moving the upper one down to meet the lower one.
We do this by adding “nothing” in the form of £ F at OD and OE.
Then we replace AB by OD + (AB + OE). The latter term is a
couple in plane OAD of value Fa, and with the right-hand-screw
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convention it is represented by a double-headed arrow pointing to
the right, as shown in Fig. 99b. The force OD is compounded with
OC to F /2 at 45 deg (Fig. 99b). The next move is to resolve the
couple Fa into Fa/+/2 along the force of Fig. 99b and Fa/+/ 2 per-
pendicular to the force. The latter couple can be written F /2(a/2),
representing two forces F 4/2 with
a moment arm a/2, and it can be
interpreted as a force equal and
(a) opposite to F /2 of Fig. 99b plus a
force parallel to F /2 at distance
a/2 aboveit. Thus the force F /2
and the couple perpendicular to it
together are equivalent to a force
F /2 at mid-height. The other
component of couple can then be
shifted to mid-height, which leads
(6) to a right-hand screw of intensity

F /2 (measured in pounds) and
L~ e Fa/~/2 (measured in foot-pounds),
-~ as shown in Fig. 99¢.
S == -3 After this result appears, it looks

quite plausible, and we might have

derived it more simply as follows.

We resolve force AB of 99a into
(c) components along AF and perpen-

dicular to it. Similarly we resolve
Vi 71 force OC along O@ and perpendicu-
lar to it. The forces along AF and
OG are alike and hence have a
resultant at mid-height of F /2.
The two components perpendicular
to AF and OG form a couple in a
plane perpendicular to AF and with moment Fa//2.

Problems 124 to 128,

¥

F1e. 99. The screw (¢) is equivalent
to the space cross (a).

22. Conditions of Equilibrium. A three-dimensional body remains
in equilibrium if, and only if, the total resultant of all forces acting on
it is zero, and since this resultant takes the form of a screw, or of a
space cross, or of a force and a couple with different directions in
space, the condition for equilibrium can be worded in various ways.
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For the two-dimensional case, three modifications of the conditions
were given (page 19). Here we do likewise. The first statement is

A necessary and sufficient condition for the equilibrium of a body
in space is that the resultant force vector (—>) and the resultant
couple vector (—>->-) both are zero.

Quite often we work with a rectangular or Cartesian coordinate
system, and we resolve every force first into its z, ¥, and z components,
which we denote by X, Y, and Z. Then we form the z component of
the resultant, which is the sum of all individual £ components of the
individual forces, or in a formula

X, =) X,

X,=2X

or shorter

and similarly for the other two directions leading to ¥, and Z,. Thesc
three components of the resultant force can be compounded by the
parallelepiped construction into the total resultant, but in this analysis
we usually do not take that step.

Next we turn our attention to moments. We form the moments of
all individual forces, first about the x axis. Let one of these forces
(Fig. 100) be resolved into its three components X, ¥, and Z. Of
these, X has no moment about PA
the z axis by the definition of z
page 13. The moment of the ¥
force is Yz, and the moment of
the Z force is —Zy, the signs
having been taken so as to call
the double-headed moment
arrow positive when directed Y/
toward increasing z. It is seen
that force Z tends to screw (in
right-handed direction) along Y
the z axis toward the origin, Fra. 100. The moment of a space force.
1.e., toward decreasing z, and therefore the moment is negative, —Zy.
Thus the total moment about the « axis of one force is Yz — Zy, and
the moment of all the forces about the x axis, being the 2 component
of the resultant double-headed arrow, is =(Yz — Zy), summed over
all the forces. We have equilibrium if the resultant force and the
resultant couple are zero, hence if all their components are zero.

3
X
X
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The second statement of the equilibrium condition then, expressed
in the form of six formulas, is

X =0

Y =0

2Z =90
=M, = 2(Yz — Zy) = 0 O
IM, = Z(Zz — Xz) =0
IM,=2(Xy—Y2) =0

Before proceeding, these formulas should be clearly understood.
First the reader should check the last two on Fig. 100. Then he
should take a point P in another octant, where one or two z, y, or z
values are negative and see that Eqs. (4) are still correct. Finally he
should notice the symmetry in the moment equations. In the paren-
theses of the z equation, only the letters  and X are absent. The
fifth equation can be derived from the fourth by replacing in it z by ,
y by 2z, and z by z, or, when writing the letters zyz in a circle, 120 deg
apart, by replacing each letter by the next one in the circle, either
clockwise or counterclockwise, but always in the same direction.
Starting from any one of the three moment formulas, this process
twice repeated will give the other two, and of course the third repeti-
tion brings us right home again. The three formulas are said to be
derivable from each other by ‘““cyeclic permutation,” and in order to
save writing, they are sometimes written

=X = 0, cyclic l

2(Yz — Zy) = 0, cyclic (4)

Comparing these equations with Eq. (1) (page 20), we see that equi-
librium in space is equivalent to six algebraic conditions, while equi-
librium in a plane is determined by three algebraic conditions.

One way of expressing the three algebraic conditions in a plane is
to require no moments about three points or axes (page 20). We are
tempted to generalize this and state that a body in space is in equi-
librium when the moments taken about six axes in space become zero.
However, there is a limitation to this. In the plane the three moment
points could not be on a common line, could not be collinear. In
space we have something similar. Imagine the resultant of all forces
on the body to be a single resultant force, without resultant couple.
Then if we take six (or more) axes in space, all of which happen to
intersect the line of action of the resultant force, the moments about
these axes are zero, and still the system is not in equilibrium, having a
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resultant. Thus the six axes must be so taken that they do not have a
common line of intersection. It is easy enough in a plane to see
whether three points are collinear or not, but it is much more difficult
to decide whether six arbitrarily chosen axes do or do not have a com-
mon line of intersection. Therefore, the equilibrium condition of no
moments about six axes is of little value for practical purposes.

If a body is subjected to arbitrary forces in & plane, it is adequately
supported by a hinge and by a roller support (Figs. 23, 71, and 101a).

(a)

(f)

Fia. 101. Various manners of supporting a plane body.

A roller support can take a force perpendicular to the track only,
and a hinge can take a general force in the plane having two com-
ponents, say horizontal and vertical. Thus we have three supporting
reactions, just the right number to satisfy the three equations (1).
A hinge in a plane is thus equivalent to two reactions, and a roller
support is equivalent to one reaction. Then a body in a plane can be
supported in & statically determinate manner by three roller supports,
as shown in Fig. 1016 (provided, of course, that the reactions at all
three supports are compressive). A bar support as shown in Fig. 101¢
is equivalent to a roller support, because the bar can take a single
force only along its center line, which is the same as in the roller where
the only possible force is perpendicular to the track. The only
limitation in all of this is that the three possible reaction forces should
not pass through a single point, because in that case they can be com-
pounded into a single resultant, which is equivalent to only two com-
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ponents, not three. Thus the plane structures of Figs. 101d and e arc
inadequately supported, whereas Fig. 101f is statically indeterminate,
having supports equivalent to four forces, one too many.

Now we are ready to consider the space generalization of the

zZ

(a) (5) (c)
Fia. 102. A hinge (a), rail support (b), and ball support (¢) capable of furnishing 3, 2,
and 1 perpendicular components of force.

foregoing. Figure 102 shows the symbols for three kinds of space
supports:

a. The space hinge or ball joint, equivalent to three reaction
forces

b. The rail support with flanged wheels, equivalent to two reaction
forces

¢. The ball support on a plane, equivalent to one reaction force

As a consequence of Eq. (4), & body in space needs six reaction
forces for adequate support, which can be made up in various ways by
combination of the elements of Fig. 102. However, not every com-
bination of such elements is satisfactory, as will be shown in example d
of the next article.

Problems 129 and 130.

23. Applications. a. The Boom with Two Guy Wires. Figure 103a
shows (in elevation) a boom OAB, pivoted at O, loaded with a vertical
load P at the end B and supported by two guy wires AC and AD.
These latter can be seen better in the plan drawing 103b. We want
to know the forces in the guy wires as well as the forces and bending
moments in the boom. First we remark that the guy wires AC and
AD lie in one plane; hence their two forces must have a resultant in
that plane, acting through point 4, and, on account of the symmetry,
that foree must lie in the plane of elevation 103a. Then the boom, as
an isolated body, feels three forces: the load P, the resultant of the
guy-wire forces, and the reaction at O. The first two forces intersect
at E, and hence the third force must also pass through E. Construct
the triangle of forces at E, consisting of the load P, of the ground
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reaction force of the boom B, parallel to OF, and of the guy-wire
resultant G. The force G is from the guy wires on the boom and is
toward the left; hence the guy wires are in tension.

Then, in order to resolve the resultant between the two guy wires,
we must have the triangle ACD in full size, not foreshortened by pro-
jection. This is shown in Fig. 103¢, where C'D’ = CD of 103b, and

cD
G
(a) B
0
4
» 2
AN
| Na .
o a_ 8 |l N i"\l\
6 | 7 a7 ¢
(6) ] s 7
L
C g (c)

F1a. 103. Plan and elevation of a boom with two symmetrical guy-wire supports.

0'A" = CA of 103a. In 103c the resultant force G is drawn in full
length, this time to the right, being now the'force from the boom on
the wires. The force is resolved into A’F, and A’F,, representing the
tensile forces in the two guy wires. The compressive force in the boom
is P cos «, constant all along its length because in this example the
plane of the guy wires is perpendicular to the boom. If this angle were
different, the compressive force in the boom would change at 4 by an
amount equal to the projection of force @ on the boom. The shear
force in the boom is P sin « in the section A B; it becomes P sin @ — G
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in the section OA. The bending-moment diagram of the boom con-
sequently is a triangle with its peak at A, the moment there being
Psin o X AB. This solves the problem.

How does this example connect with the theory of page 112, requir-
ing six supports for a body in space? The boom plus guy wires are
supported by a ball joint at O, equivalent to three reaction forces,
and by wires at C and D, each equivalent to one force—a total of five.

P

(a) z

y/g
Z

6)

I
|
(e) '}20 IRE
|
P/2 !

+Ry
Q2 A

Fia. 104. The equilibrium of a crank.

This is one less than required for adequate support, and on inspection,
we notice that there is one kind of loading the boom cannot resist
and that is a twisting couple or a double-headed arrow along its center
line. Therefore, Fig. 103 is not capable of taking all possible loads,
and in order to support it adequately, we would need one additional
support in the form of a wire or strut between the end of a rigid cross-
arm of the boom and a sidewall.

b. The Crank and Pulley. Figure 104a shows a crank in two bear-
ings and a pulley attached to it. The dimensions can be seen in the
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projections of Fig. 104b. We want to know the bearing reactions.
First we try counting to six to test whether the support is adequate.
A bearing can take a sidewise or an up-and-down force, but the shaft
is presumably free to slide along the bearing. Therefore, a bearing
counts for two, and there are four supports only. We need two more,
for instance, a thrust collar on the shaft to prevent motion along the
y axis and a wire at @ attached to the ground to prevent rotation.
If we want the system as shown to be in static equilibrium, we must
take care not to load it in a sliding or in a rotational direction. There
are no forces shown along the y axis, but there are two forces shown,
P and @, having moments about the y axis, and in zeneral, the sum
of these two moments will not be zero, and there will be no equilibrium.
Only for the relation Prp = Qrq will the total ¥ moment be zero. In
order to determine the bearing reactions, we take an zyz coordinate
system with its origin in bearing I as shown. We write the six equi-
librium equations of the shaft in terms of the forces P, Q, and the four
unknown bearing reaction components, X1, Z1, Xu, Zu (from the bear-
ings on the shaft), as follows:

z forces: X1+ Xa—P=0
y forces: 0=0
z forces: Zi+Zu—-Q=0
z moments: Zu2a — Q3a = 0
y moments: Pre — Qre =0
z moments: Pa ~ Xy2a =0

Solving algebraically for the various unknowns from these equations
gives the result

_PTP

Q———r'a—
P P
=3 Xu=3

which solves the problem.

The same result can be derived (substantially in the same manner)
by inspection. First we shift force P parallel to itself down through a
distance rp, so that it acts in the center line, and also shift force Q to
the left until it is in the center line. The moments introduced by
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these two parallel shifts cancel each other. Then the force P gives two
horizontal bearing reactions P/2, both in the -z direction. Similarly
the force @ is equilibrized by two vertical bearing reactions: 3Q/2
upward at II, and Q/2 downward at I. The total bearing reactions
Ry and Ry are then found by a parallelogram construction, as shown in
Fig. 104c, representing views from the left (in the direction of the —y
axis) on bearings I and II.

R -—
|
1
|
]w
Y
T o LT ——— £ e L~
l ELEVATION :
| !
!
Y&  PLAN

F1e. 105. Finding the bearing reactions of a rotor subjected to space forces.

¢. The Unbalanced Rotor. Figure 105 shows a rotor supported in
two bearings A and B acted upon by three forces W, Fi, and Fa,
asshown. (The forces F; and F; may beinterpreted later, on page 216,
as the centrifugal action of unbalances in the spinning rotor; for our
present problem this does not concern us, and F; and F; are just
forces of given magnitude.) The problem consists in finding the bear-
ing reactions at A and B.

As in the previous example, the two bearings are equivalent to
four reaction forces; two other reactions are necessary to support
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the rotor adequately, but since there are no forces acting that tend
to shift the rotor longitudinally or tend to rotate it, these two sup-
ports may be left out. The forces on the rotor all pass through the
center line and are all either horizontal or vertical. Thus the problem
falls apart into two plane problems. The elevation sketch shows the
vertical forces. The load W has reactions W/2 at both bearings. The
force F; has a reaction Fz(a + 1)/ (2a + 1) at the right and Fea/(2a + 1)
at the left. The plan sketch shows the horizontal force F; and its two
reactions. These reactions are compounded in the sketches at the
right of the figure, both seen from left to right along the rotor. The
reader should verify that
e )
2 2a + 1 2q +1

and that the direction shown is that from the bearing on the rotor.

In case the forces F; and F; do not happen to lie in the horizontal
and vertical planes, but at random angles, those forces can be resolved
into components and the problem
solved in the same manner.

d. The Table on Three or More
Legs. Consider in Fig. 106 a table
on three legs A, B, C, loaded with
a vertical load P on the top. To
make things general, the legs have
been.lrregularly sPa'ced’ and the Fie. 106. A vertical load P on a table
load is off center. How does the with three legs 4, B, and C.
load distribute itself between
the three legs? The problem can besolved by planestatics. Draw the
line BP, which intersects AC in point D. In the vertical plane BPD,
resolve the load P into its components at B and at D. Then, in the
vertical plane ADC, resolve the force D into components at A and C.
Thus the force P is resolved into three components at A, B, and C,
which are the compressive forces in the legs. Another way of finding
the leg reactions is by taking moments about the line AC. It is seen
that reaction B is smaller than P in the ratio of the distances from AC,
t.e.,inratio PD:BD. To find the reactions at 4 or C we take moments
about the lines BC and AB, respectively. It is interesting to note
that the location of P is the center of gravity of three weights at 4,
B, and C, each equal to the respective leg reaction.

The table on three legs standing on an icy floor has three reactions
and therefore is not adequately supported, according to page 112. Tt
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can only take a purely vertical load and is powerless against sidewise
forces (both in the x and y directions) as well as against a couple in
the plane of its top. In order to support it adequately, one of the
legs has to be made a ‘“‘space hinge” equivalent to three reactions,
and another leg has to be a ‘‘rail support,” equivalent to two reactions.
This would make the table capable of sustaining any kind of force or
couple. However, not all possible combinations of six supports are
satisfactory. If we place the table on four legs, one of which is a space
hinge, the other three being ‘‘plane ball supports” (Fig. 102), the
table is statically indeterminate under a vertical load, whereas it is
not supported at all against a couple in its own plane, being free to
rotate about the one hinged leg. Or if we place the table on six legs
all on plane ball supports, it can sustain only vertical loads and has
three legs too many for that function. The two last examples both
have six supports.

The question of how to recognize when six supports are adequate and when
they are not is too involved to be treated completely in this book. However,
two unsatisfactory combinations we can understand fairly simply.

Of the six reaction forces necessary for the adequate support of a body in
space, not more than three are allowed to lie in one plane, and also not more
than three are allowed to intersect in one point.

First we examine the case of three lines in one plane. A force lying in that
plane can be resolved into three components along the three prescribed lines
in a unique manner, as is shown in
Fig. 107. The force there intersects
one of our linesat A. Connect A with
the intersection B of the other twolines,
and resolve P along the first line (com-
ponent AQ) and along line AB (com-
ponent AR). The force AR can be
shifted along its line to start at point B

/ / and again resolved into components

B2 __\p BS and BT. Thus the force AP is

Fic. 107. A force P can be uniquely resolved into components AQ, BS, and

resolved into components along three BT in a definite manner, or in other

arbitrary lines in its own plane. words, a plane structure, supported by

three rods in arbitrary directions in that plane, can take any arbitrary force.

In case there were more than three rods in that plane, the construction would
break down, and the fourth rod would be redundant.

Next we examine the case of three or more lines intersecting at a point. A
gpecial case of this occurs when the point goes to infinity and the lines become
parallel. In Fig. 106 we have seen how a force parallel to three other parallel
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lines can be resolved in a unique manner into components along those three
lines. Later, in Fig. 111 (page 123), we shall see that a force in general can be
uniquely resolved into components along three arbitrary directions intersect-
ing with the force in one point. Both constructions, Fig. 106 and Fig. 111,
break down for more than three directions. Mechanically speaking this
means that if four or more rods, all intersecting in a point, support a body,
then the fourth and additional rods are redundant.

e. The Center of Gravity of a Three-dimensional Body. On page 34,
the center of gravity of a two-dimensional body was defined as the
point through which passes the resultant of the weight forces of all
small individual elements, irrespective of the direction in which these
weight forces act. The location of this point G was expressed by Eq.

Z

Fr1a. 108. The center of gravity of a three-dimensional body.

(2). Now let us generalize this to a three-dimensional body, placing it
in an zyz coordinate system (Fig. 108) and letting gravity aet in
the negative z direction. The moment arm about the y axis of the
weight dW of an element is Ay, which is equal to the coordinate z
of the element. Thus the sum of the moments about the y axis of
all the elements of the body is [z dW, and this should be equal to the
moment of the resultant force W about that axis, which is z¢W. Thus

we find for z¢
2o = JzdW
¢ Tdw

Next let the weight act in the x direction and take moments about the
z axis, and after that let the weight act in the y direction and take
moments about the z axis. This leads to the additional equations

(2a)

vo = 27 (2)
_ JzdW (2¢)

zG'—de
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The three coordinates zq, ye, and z¢ determine the location of a point in
space. which is called the ‘““center of gravity,” denoted usually as G.
It is left to the reader to generalize the proof of page 34 to three dimen-
sions, and thus to demonstrate that if the weight acts in a direction
skew with respect to the three axes, the resultant force will still pass
through the same point G.

As an example let us apply this to Fig. 109, showing an idealized
two-throw crank, which is made up of nine pieces of heavy line, all of
equal length @, but in which the three pieces along the z axis (the main

z
1
ol2” 2 2 x
¥z
7

Y,
F1a. 109. The center of gravity of a crankshaft.
journals of the crank) weigh twice as much as the crankpins and crank
cheeks. The centers of gravity of the individual straight stretches lie
in their mid-points, and the integrations of Eq. (2) reduce to sums of
nine terms, which are summarized in the table below. The pieces
are numbered starting from the origin.

No. | Weight z W y yWw z W
1 2 a/2 a 0 0 0 0
2 1 a a 0 0 a/2 a/2
3 1 3a/2 3a/2 0 0 a a
4 1 2a 2a 0 0 a/2 a/2
5 2 5a/2 5a 0 0 0 0
6 1 3a 3a a/2 a/2 0 0
7 1 7a/2 7a/2 a a 0 0
8 1 4a 4a a/2 a/2 0 0
9 2 9a/2 9a 0 0 0 0

Sums 12 30a 2a 2a

W 12 2
_ZyW _2a _a
Y=3IW 1276
22W 20 a
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This describes the location of the center of gravity, and the reader
should visualize that location in Fig. 109.
Problems 131 to 136.

24. Space Frames. A space frame is a structure built up of hinged
bars in space; it is the three-dimensional generalization of a truss (pages
52 to 59). Every statement made and every result found in connec-
tion with trusses can be appropriately generalized to space frames,
and as long as we are content with these general statements and
theorems, the discussion of space frames is fairly simple. However,
we can no longer draw all the bars in one drawing on a sheet of paper,
and the force triangles at each joint of the truss become space dia-
grams in the space frame. One such space construction is not particu-
larly difficult, but it ¢s more complicated than a triangle, and this,
combined with the fact that the number of bars in space frames is
considerable, makes the actual calculation of such a structure an
arduous task. We will discuss here only some of the simpler aspects
of it and work out in detail as an example the crane structure of Fig,
112,

On page 53 we saw that the simplest combination of bars that forms
a stiff frame in a plane is a triangle, and the simplest way of building
up a statically determinate truss is to add new triangles to the previous
ones by putting in two new bars and one new
joint at a time.

In space we start again with a plane tri-
angle ABC (Fig. 110), and now we wish to
fix a point D in space (outside the plane of
the triangle) to the triangle in a rigid manner
with a minimum number of bars. We need
three bars to do it, because if we had only
two, say AD and CD, then point D could still

i . . Fie. 110. Six bars, form-
rotate with triangle ACD about the line AC. ing the sides of a tetrahe-

The third bar BD stops this rotation and fixes ~dron, constitute the sim-

plest rigid space frame.

point D. Thus, a tetrahedron (Fig. 110) is

the simplest statically determined, stiff spaceframe. From thisfunda-
mental frame we can start building. If a fifth point £ isto be attached
to it, we can choose one of the triangles of the tetrahedron, say BCD,
and attach the new joint E to it by three new bars BE, CE, and DE.
Thus we add three new bars and one new joint at a time. In such a
structure, therefore, the relation between the number of bars, b, and
the number of joints, j, must be b = 3j+ constant. In the tetrahe-



122 SPACE FORCES

dron we count b = 6 and j = 4, which, substituted in the formula,
gives 6 = 12 4 constant; hence, the constant must be —6. The
relation between bars and joints thus is

b=3j~-6

A space frame of this description with hinged joints, subjected to
arbitrary forces at the joints only (and hence not to forces on the bars
between joints), will have forces in the bars along their center lines
only, so that the bars are without bending.

The method of joints in a truss (page 56) is based on the fact that
there are two equilibrium equations at a joint: the horizontal and
vertical force equations; there is no moment equation because all
forces pass through the joint and hence have no moment arms. Then,
if all but two of the bar forces at a joint are known, these two can be
calculated. In space there are three equilibrium equations at a joint:
the z, y, and z force equations; again there are no moment equations
for the same reason as in the plane truss. Thus, if in a space joint all
but three bar forces are known, these three can be calculated. By
setting up equilibrium equations for all the joints of a space frame we
obtain 3j equations. The unknowns in these equations are the bar
forces, b in number, and the reactions at the supports, which, as we
saw on page 112, are six in number. Thus we see that in principle the
number of statics equations 37 is just sufficient to solve for the b + 6
unknowns, which is another way of saying that the frame is statically
determinate.

As with plane trusses (page 53), the method of constructing a space
frame by consecutive tetrahedrons is not the only one whereby a stiff,
statically determinate frame can be obtained. Many frames have
been built that cannot be so constructed, although they do satisfy
the b = 3j — 6 relation. Further discussion of this subject leads us
too far, and the reader is referred to Timoshenko and Young’s
“Engineering Mechanics’ or to their ““Theory of Structures.”

Now we come to the fundamental construction that in the method
of joints has to be performed over and over again: the determination
of the forces in three bars coming together at a joint, subjected to a
given external force at that joint. The graphical construction, solv-
ing this problem, is performed in Fig. 111, where F is the force and
a, b, and ¢ are the three bars, drawn in plan and elevation. Before
going into details, the general procedure of the construction will be
described. There are four intersecting forces, F and the three unknown
ones, A, B, and C. We choose one of these three, say 4, and com-
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pound it with F. The resultant must lie in the plane through A and
F. TFor equilibrium this resultant must be equal and opposite to the
resultant of the two remaining forces B and C, which lies in the plane
through B and C. Thus both resultants lie along the line of inter-
section of the planes A,F and B,C. In the figure the points a, b, c,
and f, in plan as well as in elevation, denote the intersections of the

Fia. 111. Resolution of a force F into components along three lines intersecting in a
point with the force.

corresponding forces with the base plane. Then the dot-dash lines
af and be in the plan drawing are the traces of the planes A,F and B,C
with the base plane. These two traces intersect at I; hence 71 (both
in plan and elevation) is the line of intersection of the two planes and is
the direction of the partial resultants (4 + F) and (B + C). Now
we proceed to the force diagrams to the right of Fig. 111. First the
known force F is drawn, and a triangle is formed on it with directions
parallel to A and to TI, both in plan and elevation. This leads to
the vertical and horizontal projections of force A and of the resultant
R. This resultant equals the sum of the unknowns B and C, so that
other triangles with sides parallel to B and C are erected on R as a
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base. The arrows are drawn in the direction of the forces acting on
the point 7', and it is seen that, in both the elevation and plan pro-
jections of the force diagram, the polygon is a closed one with all the
arrows in the same direction. The bars 4 and C are in compression,
and B is in tension.

The same problem can be solved analytically by resolving F,
as well as the unknown forces 4, B, and C, into their z, y, and z com-
ponents, and then writing the equilibrium equations in those three
directions and solving them for A, B, and C. For the general case

(Fig. 111) the graphical solution is

usually simpler than the analytical one,

but in cases where the bars have angles

5 14 Vo of 90 or 45 deg with each other, the

calculation may simplify itself suffi-

ciently to make the analytical method
preferable to the graphical one.

Now we will apply the foregoing
to an example (Fig. 112) of a crane
structure, which is chosen as simple as
possible for the purpose of illustration.
It consists of two horizontal triangles,
1,23 and 9,11,12) joined by three
uprights 4,7, and 10, braced by three
diagonals 5,6, and 8. On top of this
box the three bars 13,14, and 15 fix
Fie. 112. A rigid and staticslly the apex, carrying a vertical load.
determined space frame. The bars have been numbered in the
sequence of their build-up process, as described on page 121. Note
that there are 15 bars and 7 joints, satisfying the equation of page 122.
The structure is shown supported on a hinge under 4, equivalent to
three reactions; a rail under 10, equivalent to two reactions, and a
plane ball support under 7. All of these are necessary to support a
general loading at the apex, but in this case, for simplicity, the loading
P has been assumed purely vertical. This gives only vertical reaction
forces at the three supports, so that for this loading, three plane ball
supports would have been sufficient.

In Fig. 113, the construction has been carried out in plan and
elevation by repeated operations of the procedure of Fig. 111. First
we search for a joint where only three bars exist, and the top appears
to be a good place to start. (We could also start from joint 1,24, but
in that case, we would have to find the reaction first, which is not
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necessary at the top.) The two force diagrams just to the right of
the main figures in Fig. 113 are for the top joint and are started from
the circled point. First we lay off P, which in the plan appears as a
point only. Then we conclude from symmetry that the forces in
13 and 14 must be alike, so that the resultant of those two forces lies
in the (vertical) plane through P and 15. The elevation force dia-
gram then consists of three forces in a plane (force P, force 15, and the
resultant 13,14), and it can be drawn immediately. In the plan dia-
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F16. 113. Determination of the bar forces in the crane of Fig. 112,

gram we have three unknown forees: 13, 14, and 15, so that usually
we could not draw it. But we know that forces 13 and 14 have the
same magnitude, so that the diagram follows. The arrows are forces
on the top joint, so that we see that 15 is in tension and 13,14 are in
compression. Force 15 appears in its full size in the elevation dia-
gram; 13 and 14 must be compounded properly from the two projec-
tions shown. (They are not to be compounded by the Pythagorean
theorem; it is left to the reader to visualize how these forces are
oriented in space and to find their magnitudes by graphical construc-
tion from the projections shown.) Thus we know forces 13,14,15,
and, looking at Fig. 112, we search for another joint with not more
than three unknown bars. We have only one such joint, and it is
10,11,12,14. The force diagrams for this joint are shown next in
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Fig. 113, again starting from the circled points with the known force
14. The diagrams are simple because of the fortunate circumstance
that one force reduces to a point in projection (force 11 in the elevation
and force 10 in the plan). Note that the arrows of force 14 in these
diagrams are the reverse of those for the top joint. (Why?)

The next joint we can approach (Fig. 112) is 7,8,9,11,13, and we
conclude from symmetry that force 9 must equal force 12, force 7
must equal force 10, and consequently the diagonal 8 is without stress.
Next we take the six-bar joint 4,5,6,9,12,15, in which only 4,5,and 6
are unknown. In the elevation and plan diagrams we start from the
circled point and lay off the three known forces 15,9, and 12. In the
elevation diagram we arrive at a point vertically above the beginning.
The reason for this coincidence should be clear on inspection of the two
previous elevation diagrams. It is seen that the force diagrams for
this joint can be closed by a force 4 only, leaving 5 and 6 without stress.
Next we turn in Fig. 112 to joint 1,3,5,7, in which 5 and 7 are known,
while 1,3, and the vertical reaction are unknown. (We take this
joint and not any of the other two supports, because only in this one
is the reaction limited to a vertical force only.) Without constructing
any diagram we conclude that the reaction must be equal to force 7,
while 1 and 3 are stressless. Next we go to the rail support joint
3,2,8,10, and conclude that the reaction is purely vertical and equal
to force 10, while 2 is stressless. Finally we end up with joint 1,2,4,
in which only the three components of reaction are unknown and con-
clude that the reaction is purely vertical and equal to force 4.

Before leaving this example, a few remarks are in order. The
entire bottom part of the structure, with the exception of the three
vertical struts, is seen to be without force. Could then the diagonals
5,6,8 and the bottom bars 1,2,3 have been omitted without danger?
The answer to this is yes, provided that the load is purely vertical as
assumed. For a small horizontal component in the load P, all those
bars will acquire forces, and then they are necessary.

On page 54 the method of sections was discussed for plane trusses,
and was seen to be of advantage in case only a single bar force was to
be found. This method of sections also can be generalized to space
frames. For example, if in Fig. 112 only the force in bar 13 is wanted,
we can cut off the top of the crane through bars 10,11,12,13, and
15. That top end then is loaded with those five bar forces and with
P. Now we write the moment equation about bar 12 as axis. All
moments are zero except those of P and of bar 13, so that the force in
that bar can be determined immediately. If force 15 were wanted,
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we could make the same section and write the moment equation about

bar 11 as axis.
Problems 137 and 138.

26. Straight and Curved Beams. On pages 68 to 80 we discussed
shear-force and bending-moment diagrams in straight beams subjected
to forces in one plane. This will now be generalized in two directions:
first to straight beams subjected to forces and moments in several
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Fi1a. 114. Bending moments in two planes and the twisting moment in & beam.

planes, and second to curved ‘“beams,” such as arches in build-
ing construction, rings, helical springs, and other common machine
elements.

In the bending-moment diagrams of Figs. 77 to 81, where the load-
ing (and the reactions) were all in one plane, the bending moment at
any section could be represented by a curved arrow in the plane of
the loadings or by a double-headed straight arrow perpendicular to
that plane (Fig. 95). This is illustrated in Fig. 114a, where all loads
and reactions are in a vertical plane, and the double-headed bending-
moment arrow at a section is horizontal, pointing into the paper. By
turning that figure through 90 deg we arrive at Fig. 114b with hori-
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zontal loadings and reactions, and a bending-moment vector in the
(vertical) plane of the paper, pointing downward. In case a beam is
loaded with forces at arbitrary angles, neither horizontal nor vertical,
these forces can be resolved into horizontal and vertical components,
and we have a combination or “superposition” of the two cases 114a
and 114b. At each section, then, the beam has a bending moment in
the horizontal plane and another in the vertical plane. Plotting these
along the beam we obtain two bending-moment diagrams: a horizontal
and a vertical one. At each section it is, of course, possible to com-
pound the two bending moments into a resultant bending moment in
a skew plane (Fig. 96b), but as a rule this has no practical advantage,
since the angle of this oblique plane varies along the length of the
beam. Figure 114c shows a beam with crossarms at the ends, and
the loading of these crossarms amounts to a bending moment in the
vertical plane, as in Fig. 114a. The only difference between 114¢
and 114¢ is that the bending moment in 114a grows proportionally
with the distance from the left support, whereas in 114¢ it is constant
along the length of the beam. Of course, Fig. 114¢ can again be turned
90 deg about the beam center line, crossarms and all, to give horizontal
bending moments. Finally, Fig. 114d shows something new. Here
the forces on the crossarms are perpendicular to the beam, and they
amount to a couple in a plane perpendicular to the beam with a
double-headed arrow along the beam. This couple at the beam
section is called the “‘torsion couple” or “twisting couple,” which in
1144 is of constant magnitude along the beam. For other loadings
the twisting couple or “twisting moment”’ may vary from point to
point along the beam, and the magnitude of the couple can be plotted
along the beam as the ‘‘twisting-moment diagram™”’

In the sections of the four beams of Fig. 114, the double-headed
straight arrows are a much clearer indication of the moments involved
than are the curved arrows. This becomes more pronounced in cases
of greater complication, so that in what follows the curved plane
arrows will be dropped altogether in favor of the double-headed
straight ones.

Consider Fig. 115, showing an L-shaped beam built into a solid
support at the bottom. In 115¢ this beam is loaded with a single load
in the plane of the L. This being a plane problem, we expect only a
bending moment in the plane of the beam with the moment vector
perpendicular to the plane and no twist or bending in the other plane.
In the upper leg of the L, the bending moment is Pz, proportional to
the distance z from the load. In the vertical leg the bending moment
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is Pa, independent of the location along the leg. Thus the bending-
moment diagram has the shape shown, where the value of the moment
is plotted in a direction perpendicular to the beam. Now we examine
the space problem of Fig. 115b, where the beam is loaded by a force
P perpendicular to the plane of the L. In the upper leg we have again
a bending moment Pz, as before, but this time the bending moment
lies in a plane perpendicular to the paper with the moment vector
lying in the plane of the L as pe-a-
shown. Inthe vertical legthere is
a constant twisting couple Pa,
which is plotted perpendicular to
the beam in Fig. 115 and is cross-
hatched diagonally. It is inter-
esting to follow what happens to
this moment when it turns the (@) (5)
sharp corner of the L. For this Fre. 115. Bending and twist in an L-
purpose consider two sections: a shaped cantilever.

first one just to the right of the corner, and a second one just under
that corner. Since the two sections are infinitely close to each other,
the moment vector is the same in both sections, namely, Pa and pointed
upward in the plane of the paper. But for the first section this vec-
tor is perpendicular to the beam and thus represents a bending
moment, while for the second section it is along the beam and repre-
sents a twisting moment.

(al (6) c)
F1g. 116. Bending and twist in a quarter-circle cantilever,

A bending moment in a plane perpendicular to an L-shaped beam
element becomes a twisting moment when the beam turns through a
90-deg corner.

Figure 116 shows a quarter-circle beam, built in at the bottom.
When proceeding from one point on this beam to a next point, we do
not turn through 90 deg but through a small angle. Let us investigate
the moment situation. In Fig. 116a the force lies in the plane of the
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quarter circle; the problem is a plane one, and at the section ¢ indi-
cated, the moment arm (dashed line) of force P is R sin ¢, so that the
bending moment is PR sin ¢, with the arrow perpendicular to the
paper pointing upward out of the paper. This value has been plotted
perpendicular to the curved bar. In Fig. 116b, the end force is per-
pendicular to the paper, and at point B the moment arm of the force
is AB = 2R sin (¢/2). The total moment vector shown has the
value 2PE sin (¢/2) and is directed perpendicular to AB, 7.e., at angle
¢/2 with respect to the radius through B. This moment vector can
be resolved into radial and tangential components. The tangential
component, interpreted as the local twisting moment, is sin (¢/2)
times the total moment or

Mo = 2PR sinzg = PR(1 — cos ¢)

The normal component, interpreted as the local bending moment, is
cos (¢/2) as large or
Mywa = 2PR singcos-g = PR sin ¢

These results can be derived somewhat differently. The moment arm
of force P about the tangent BC is

AC =BD =0B —-0D =R — Rcos ¢ = R(1 — cos ¢).

This is the twisting-moment arm, which checks the above result.
The bending moment is the moment about the normal axis OB, which
is AD in the figure; equal to R sin ¢ as before. In Fig. 115¢ the bend-
ing moment has been plotted to the outside of the circle and the twist-
ing moment to the inside, both in a radial direction. At the built-in
point the two moments have the same value; everywhere else the
bending moment is the larger of the two.

One of the most useful applications of these relations is to coil
springs. Figure 117 shows a coil spring in three conditions of loading:

a. In tension: forces P at the two ends
b. In twist: twisting couples M, at the ends
¢. In bending: bending moments M, at the ends

What are the reactions at a section through the spring wire in these
cases? The spring is supposed to be tightly coiled, which means
that the various circles of the coils practically lie in a plane and for
this analysis are considered to be in a plane. At the ends the spring



STRAIGHT AND CURVED BEAMS 131

turns through 90 deg in the plane of the circle to continue along a
radius to the center of the circle; there it turns once more through 90
deg and continues along the center line as shown. In case a the load
is an upward force P. If somewhat more than half a turn is cut off at
A as shown, vertical equilibrium of that piece requires that at A there
is a downward shear force P at the section A. Then the two forces P
form a couple in a plane perpendicular to the wire at section 4, and
this couple must be held in equilibrium by an equal and opposite
couple at A. The direction of the double-headed arrow of this couple
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Fi1a. 117. A coil spring in tension (a), twist (b), and bending (¢).

is tangential to the spring wire, independent of our choice of the loca-
tion of A along that wire. Thus the wire of a spring subjected to
tensile forces is in twist. If the forces P were reversed, all reactions
would be reversed with it, including the twisting moment in the wire.
It follows that the wire of a spring subjected to compressive forces
likewise is in twist.

In Fig. 117b the ends of the spring are subjected to a twisting
couple. Isolating the portion above the section A, we see that the
equilibrium of this portion requires a moment vector at A equal and
opposite to the one at O, because on page 104 it was seen that such vec-
tors can be shifted parallel to themselves without penalty. Thus
in the vertical projection of 117b we look on the point of the arrow at
0, and we look on the tail or feather end of it at A. This, as is usual,
is indicated by a dot for the point and by a cross for the feather end.
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The vector at A is parallel to the center line of the spring, independent
of our choice of point 4 ; the moment is a bending moment in the wire.
A spring subjected to end twist has bending in its wire.

Finally, Fig. 117¢ shows a spring subjected to bending moments at
its ends. The moment at section A lies in the plane of the coil, and
now its nature does depend on the location of A along the wire. For
points B,B the moment is a twisting moment; for points C,C it is a
bending moment; for any point in between B and C it is mixed bend-
ing and twist. Thus, the wire of a spring subjected to bending at
its ends is alternately in twist and in bending when proceeding along
that wire in steps of 90 deg.

Problems 139 to 141.



CHAPTER VIII
THE METHOD OF WORK

26. A Single Rigid Body. The “method of work” is a procedure
for solving problems in statics that is different from what we have
seen so far and that is of practical advantage in applications to compli-
cated systems involving many elements. The method is known by
several other names, for which the reader is referred to the historical

note on page 151.
In describing the method we start by defining the term ““work.”

() 6)
F1g. 118. The definition of work.

The work done by a force is the product of that force and the dis-
placement of the point of action of that force in the direction of the
force.

The meaning of this definition is illustrated in Fig. 118a, in which
F is a force acting on the point of action A, which point is allowed to
displace itself through a distance s in an arbitrary direction, including
an angle a with the force. We resolve the displacement vector into
components along F and perpendicular to F. The component along
F, which is the ‘“displacement of the point of action in the direction of
the force, ‘“has the magnitude s cos a, and the work done by the force
i, by definition,

W = Fs cos a

This expression can also be written as s(F cos o), and F cos a can be

interpreted as the rectangular component of the force along the line

of displacement. Thus the work done by a force is also equal to

product of the displacement of its point of action and the (rectangular)
133
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component of the force along the line of displacement. This property
is illustrated in Fig. 118b. As a particular case it follows that a force
does no work when its point of action is displaced in a direction per-
pendicular to that force. The weight force does no work when a
body is displaced horizontally. If a body is displaced in an arbitrary
direction, partially horizontally and partially vertically, the work done
by the weight force equals the weight multiplied by the vertical dis-
placment, independent of the horizontal shift.

The work is considered positive if the displacement is in the same
direction as the force and negative if these two directions are in opposi-
tion. Thus the weight force does positive work on a descending body,
and it does negative work on a body that is being hoisted up, while
the rope force that does the hoisting performs positive work.

Work is measured in inch-pounds or foot-pounds, which is the
same measure as the moment of a force. Work has certain properties
in common with moment: whereas work is the force multiplied by a
length in line with itself, moment is the force multiplied by a length
across itself. For moments we have seen Varignon’s theorem on
page 14. A similar theorem holds for work:

The algebraic sum of the amounts of work done by a number of
forces acting on the same point equals the work done by the resultant
of those forces. The proof is simple. Since all forces, including the
resultant, act on the same point, they all have the same displacement.
Let us resolve all forces, including
the resultant, into their compo-
nents along the displacement and
perpendicular to it. The work
of any force is the displacement
multiplied by the in-line compo-
nent of the force. Thus the work
done by all forces (exclusive of the
resultant) is the displacement mul-
tiplied by the algebraic sum of all
in-line components. But by Fig.
Fra. 118. Varignon’s work theorem for 5 (page 10) we know that the sum
forces acting on a rigid body. R .

of all in-line components is the
in-line component of the resultant, which completes the proof.

Next we will try to generalize Varignon’s work theorem from forces
acting through a common point to the case of forces acting on a rigid
body, of which the different points may have different displacements.
For example, in Fig. 119, two forces F4 and F are acting on the rigid
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body at points 4 and B. We give to the body a small displacement
by rotating it through a small angle about point 0. The small dis-
placement vectors are shown in the figure, and it is seen that F. does
positive work and Fs does negative work. It is by no means obvious
(but true nevertheless) that the resultant B of Fi and Fp does an
amount of work equal to the sum of the work done by F4 and Fp
separately. To see this we must first prove that the axiom of trans-
missibility of forces (page 4) applies to work as well as to static
equilibrium. Granted that it does, then we can shift F, along its
line of action to C, and at that location the force F. does the same
amount of work as it does at A. The same holds true for B, and then
we have reduced our problem to that of forces acting through a com-
mon point C, for which Varignon’s theorem was just proved.

¥ig. 120. The work done by a force on a small displacement, of a rigid body is the same
for all points of application of the force along its line of action.

To see that the axiom of transmissibility holds, consider Fig. 120,
showing a rigid body on which a force P is acting at point A. We
propose to shift the force along itself to make it act at another point
B, and we propose to show that when the body is given an arbitrary
small displacement, the work done by P at point A4 is the same as the
work done by P at point B. Let the displacement of the body be
broken up into several stages: first a parallel displacement of line AB
(and with it the entire body) to the position 4'B’; another parallel
displacement to A”’B”, perpendicular to the first displacement; and
finally a small rotation about the mid-point between A"’ and B’ to
the final position A’”’B’”’. During the second and third stages of this
displacement, the force P does no work, whether located at A or at B,
because the displacements are perpendicular to P. Only during the
first stage does the force perform work, to the amount P X AA’ or
P X BB’. But, if the body is rigid, the length AB remains constant,
or AB = A’B’, and consequently AA’ = BB’. Thus we have proved
that a force acting on a rigid body which is given an arbitrary small
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displacement performs an amount of work that is the same for all
locations of the point of application of that force along its own line of
action.

We note that this statement is true only for small displacements,
because for a large rotation from A”’B" to A’’B’’ in Fig. 120, the
displacement A”’A’’ does have a component in the direction of P,
We also note that it is true only for rigid bodies, because if the body
were deformable, the length A’B’ would not have to be the same as AB.

By the explanations around Fig. 119 we have proved Varignon’s
work theorem for concurrent forces acting on a rigid body. We have
not yet proved it for the more general case of non-concurrent forces,
for which it is also true.

The work done by any set of forces on an arbitrary small dis-
placement of a rigid body equals the work done on the same displace-
ment by another set of forces that is statically equivalent to the first
set. To prove this, we remember that in constructing the resultant
of many forces, or in finding another set of forces statically equivalent
to the first set (page 106), we used only three procedures over and over
again: (a) the shifting of forces along their own lines of action, (b)
the parallel shifting of forces across their lines of action, introducing a
couple in the process, and (¢) the compounding of intersecting forces
by the parallelogram construction. We have already proved that
Varignon’s work theorem holds for operations (a) and (c¢), so that we
have to prove it only for operation (b). That operation is accom-
plished by adding ‘“‘nothing” to the force F in question in the form of
two equal and opposite forces (Fig. 14, page 18). The algebraic sum
of the work done by these two added forces is zero for any arbitrary
displacement, because the forces are equal and opposite and have the
same point of action and hence the same displacement. Therefore,
Varignon’s work theorem is true for the most general case.

The moment theorem of page 14 can be similarly generalized, and
the proof is along the same lines as that for the work theorem just
mentioned. The statement of Varignon’s generalized moment
theorem is

The moment of a set of space forces about an arbitrary line in space
is equal to the moment about that same line of any other set of forces
that is statically equivalent to the first set.

We shall have occasion to use this theorem later (page 318).

Next we investigate the work done by a couple on a given displace-
ment. In Fig. 121 let the couple FF’ act on the points 1 and 1’ of a
rigid body. Give the body a small displacement so that point 1
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moves to 4 and point 1’ moves to 4. This movement can be split
up into three phases: first, a shift of 1-1’ along itself to 2-2; second, a
parallel shift perpendicular to itself to position 3-3’; and finally a
rotation of 3-3’ about its center to 4-4’. During the first phase
neither force does work. During the second phase one force does
positive work and the other an equal amount of negative work, with
a total of zero. During the third phase both A

forces do positive work. Let the angle of (

rotation be d¢, measured in radians, and g :

let the moment arm 1-1’ be a. Then the 4
displacements 3-4 and 3’-4’ are a d¢/2, and 21— 3',
the work done by each force isFade/2. The ay _ 4,
work done by both forces, <.e., by the couple, 1 2 r _}2
is (Fa)de = M dp. Thus l P

A couple in a plane does no work if the F
body on which it acts is displaced parallel to Fie.121. The work done by
itself in any direction; it does workonlywhen ® °°UPle is M de.
the body is rotated (in the plane of the couple), and the amount of work
done is the product of the couple and the angle of rotation in radians.
As before, the work is considered positive if the directions of the couple
and of the (rotational) displacement coincide, and negative if those
directions are opposite to each other.

Generalizing this to three dimensions, we see in Fig. 121 that a
displacement of the body in the third direction, perpendicular to
the paper, again involves zero work by either of the forces, so that a
couple acting on a rigid body does no work on a parallel displacement
of that body in any direction in space.

Now we consider rotations of the body about three perpendicular
axes in succession. First we investigate a small rotation about an
axis parallel to the force F, lying in

Mo r———df the plane of the paper (Fig. 121).
S’"“’l* ; Such a rotation causes displace-
| o J Axis of rotation ments at the points of actions of

~7 the forces in directions perpendicu-
coS o .
Fie. 122. A couple does work only 12T to the forces; hence no work is
with its component along the axis of done. The same is true for a small
rotation. . ..

rotation about an axis in the plane
of the paper parallel to line 1-2-1’-2’. The only work is done when the
body rotates about an axis perpendicular to the paper, the work being
M de as before in the two-dimensional case. The most general case
is shown in Fig. 122, where a couple M is acting on a rigid body, which
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is allowed to rotate through the small angle d¢ about an axis, obligue
in space with respect to the couple vector and including an angle o
with it. Then, by virtue of Fig. 96 (page 105), the moment vector can
be resolved into a component M cos « along the axis of rotation, and a
component M sin « perpendicular to it. We have seen that the latter
component does no work on the rotation, and the first component does
work to the amount M cos « dp. Thus the work done by a couple in
space is the product of the angle of rotation and the (rectangular) com-
ponent of the moment vector along the axis of rotation. This state-
ment is very similar to that for forces (page 133).

By the definition of work it is obvious that a force or a couple does
no work on any displacement if that force or couple happens to be
zero. Now, the condition of equilibrium of a rigid body (page 109)
is that the sum of all forces acting on it shall have a zero resultant force
and also a zero resultant couple. Then by Varignon’s theorem we
conclude that

The sum of the work done by all external forces (including support
reactions) acting on a rigid body in equilibrium is zero for any small
displacement that may be given to the body.

This gives us a means of writing down equations of equilibrium.
For example, let the displacement of the body consist of a small shift
dz parallel to the z axis. Then all z components of the forces do work;
the y and z components do no work, and we must have, for equilibrium,

ZXdz =0

in which dz is a common multiplying factor for all terms. The equa-
tion therefore becomes

(Z2X)dx =0 or X =0

which is the same as Eq. (4) of page 110. The other Eqgs. (4) can be
obtained similarly by computing the work on small displacements
in the y and z directions and on small rotations about the three axes.

Nobody, except possibly the Duke of Marlborough,! likes to write
dz’s behind a number of terms for the purpose of erasing them again
later, so that the method of work, as applied to a single rigid body is
never used, since it only introduces an unnecessary complication into
the component method of Eq. (4). However, the new method, when

1 The Duke of Marlborough
Had twenty thousand men.
He marched them up a hill
And marched them down again.
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applied to systems consisting of a number of bodies connected together
by hinges or ropes, will result in a considerable saving of work in

many cases.
Problems 142 to 144.

27. Systems of Bodies. Consider in Fig. 123 a system consisting
of two bodies, connected by a frictionless hinge, loaded by a number
of known forces Fy, Fs, . . . , Fn, and supported adequately, or in a
statically determinate manner. Imagine the system broken loose
from one of its supports, say R., and given a small displacement. The
second support Ri, as well as the connecting hinge H, is left undis-
turbed; the bearing R; does not move, but the hinge H does. Apply

2y R,

Fia. 123. The work done by a set of forces on a system of two bodies is the sum of the
amounts of work done on each body separately.

the method of work to each one of the two constituent bodies, 1 and 2,
separately. The hinge force connecting the two bodies is unknown,
but by the axiom of action and reaction, the force H from 2 on 1 is
equal and opposite to the —H from 1 on 2.

Applying the method of work to the first body, which we observe
to be in equilibrium, we conclude that the work done by Ri, Fy, F,
and H is zero. Similarly, for the second body, the work done by
Fs ..., Fn —H, and R is zero. But the hinge, being a common
point of the two bodies, has only one displacement, so that the work
done by H on the first body is equal and opposite to the work done by
—H on the second one. Adding the amounts of work for both bodies,
the H terms cancel, and we find that for the system of two bodies the
work done by Fy, Fs, . . . ,Fn, Ry, and R, is zero. It is seen that the
hinge force has dropped out of this equation. This argument can be
extended to n bodies, held together by » — 1 hinges, with the same
conclusion: the n — 1 hinge forces do not appear in the work equation.
The forces Fy, . . . , F. we will call external forces of the system to
distinguish them from the hinge forces H, which we will call internal
forces of the system. In this example the work done by the internal
forces is zero. We then come to the general conclusion:



140 THE METHOD OF WORK

The work done by all external forces and support reactions on an
arbitrary small displacement of a multibodied system in equilibrium
is zero, provided the internal forces of the system do not do work.

Before proceeding with the theory, the advantage of the new
method will be shown in an example, the two-bar system of Fig. 124aq,
loaded by a vertical load P in the middle of one of the bars. This load
tends to push the two supports apart, and we want to know the conse-
quent horizontal component of the support reactions. We break
loose support 2 and allow the end of the bar 2-3 to slide to the right
by the small amount ¢ (Fig. 124b). As a consequence the bar 1-3
turns about 1, and the point of application of P moves at 45 deg

4

F1G. 124. Determination of the bearing reaction 2 by the method of work.

toward the lower right; the vertical component of this displacement
we call 6. The work done by the external forces (P only) and reactions
(at 1 and 2) is

Ps — Xe

where X is the horizontal component of the force from the support 2
on the bar directed to the left. The vertical component of the reaction
at 2 exists but does no work, since the displacement is purely hori-
zontal. The reaction force 1 does no work, because there is no dis-
placement there. The internal hinge force at 3 does no work, assum-
ing no friction in that hinge.

For equilibrium the above expression must be zero, and

x=pd
€

The solution of the problem is thus reduced to finding the ratio of the
small displacements § and e.

In Fig. 124b the new location B of the top hinge is on the right bar,
because a small rotation about 1 moves A perpendicularly to the radius
14. Now, by symmetry of the two bars, e is twice the horizontal
distance between A and B. But that horizontal distance between A
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and B is again twice the horizontal displacement at P, since it is twice
as far from the hinge 1. Again, by the 45-deg relation at P, the hori-
zontal and vertical displacements at that point are the same; hence we
conclude that ¢ = 44 and consequently that X = P/4.

By the old method we would have to set up equilibrium conditions
for the two bars separately, and the internal hinge reaction at point 3
would appear in the analysis. In this case we would remark that the
bar 2-3 is without intermediate loads, so that it can be in tension
or compression only (page 23). Hence the foree in it is X 4/2, in
which X is the horizontal component at 2, as before. Now, writing
the moment equation for bar 1-3 about 1 as a center, we have

Xa /2 = Pa/2/2

with the same result. The two analyses lead to the answer with about
the same amount of work in this case; however, they are entirely dif-
ferent, and the advantage of the method of work is that the internal
hinge force does not appear in the equations. In this problem we have
one internal hinge only; the desirability of the work method over the
resultant method increases with the number of internal reactions of
the system.

Now we return to the theory and examine once more the statement
of the method on page 140. That statement contains the word *pro-
vided,” which weakens it considerably. It is in order, therefore, to
investigate now under which circumstances internal forces do or do
not perform work.

Forces exerted by one body of a system on another body are of
various types, such as:

a. Normal forces at contact surfaces

b. Tangential forces at contact surfaces (friction)

¢. Forces transmitted by (inextensible) ropes or struts
d. Forces transmitted by extensible springs

e. Forces, not classed under a to d

We will investigate the cases a to d one after the other, and leave out
case ¢, which comprises forces that hardly ever occur in practice, such
as magnetic, electric, or gravitational attraction forces between the
various parts of a system.

Case a occurs in a frictionless hinge. In general two surfaces in
contact must displace through the same distance in the normal direc-
tion, because if they did not, they would either draw apart or dig into
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each other. By the axiom of action and reaction the forces on the two
surfaces in contact are equal and opposite, and with the same displace-
ment, they perform equal and opposite amounts of work, totaling
zero. The same conclusion is reached for case ¢; the two ends of an
inextensible rope or strut must have the same displacement along the
strut or rope, because if not, it would become longer or shorter (Fig.
120).

Now we turn to case b, which is different. Let a block rest on a
horizontal plane, and let there be friction between the two: a force F
from the plane on the block and —F from the block on the plane.
Now let the block slide along the plane through distance 6. Then
the force F on the block performs work to an amount —F§ (negative
because the friction force is always directed opposite to the motion),
and the force —F on the plane does zero work because the plane does
not move. Hence the internal friction forces perform work to an
amount equal to the negative product of the force and the relative
displacement between the two sliding surfaces. The amount of
work is proportional to the relative displacement, and it is inde-
pendent of the actual or total displacements. Suppose, for example,
that the block moves through distance ¢ + 8, and the plane through dis-
tancee. Then the work done by the force F on the block is —F(e + 8),
and the work by the force —F on the plane is Fe, the total being —F3,
independent of the common displacement ¢ and proportional to the
relative displacement & only.

Now let us repeat the analysis of page 139 on the subject of Fig.
123, in which the internal force H consists partially of a normal force
N and partially of a friction force F, and let the point of contact of
body 1 move tangentially through e + 3, while the point of contact of
body 2 moves through e. Then the work done by the forces on body
1 is the work done by F., Fs, Ry, and N plus the amount —F(e + 8),
which sum is zero (page 138). On body 2 the work is that done by
Fs, . .., Fa, Ry and —N plus the amount Fe, which sum again is
zero. Adding the two gives again zero, which is equal to the work of
all external forces and reactions plus the amount —F$, or in other
words, the work by the external forces equals the positive amount F3.
This positive amount of work is usually called the “work dissipated
by friction.” Then, the general rule of page 140 becomes for this case

The work done by all external forces and support reactions on an
arbitrary small displacement of a multibodied system in equilibrium,
having friction in its joints, is equal to the work dissipated by these
internal friction forces.
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In order to calculate the friction work in a given case we have to
know not only the relative displacements, but also the friction forces,
which usually means that we have to compute the normal forces.
Thus these internal forces have to be calculated anyhow, which takes
away most of the direct simplicity of the method of work. Applica-
tions of this relation will be given in the next article.

Finally we investigate case d, where the internal forces between
bodies are transmitted through extensible springs, as shown in Fig.
125, which is a modification of Fig. 123. The spring is shown in com-
pression with force 8. As before, we apply the method of work to
the two bodies, 1 and 2, separately and add the amounts of work.
The argument should be carried out by the reader, and the result is
that the work by all external forces and reactions plus 84 is zero, or

4 d
B ad <& << L. 5
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Fi1a.125. The work done on a system equals the sum of the amounts of work done on all
constituent parts.

that the work of all forces and reactions equals —S5. Now 6 is the
extension of the spring, and consequently — 3 is the shortening of the
spring, and —86 is the product of the compressive spring force and
the shortening, which is the work done by the internal forces on the
spring. Later (page 256) we will see that such work is stored in the
spring in the form of elastic energy and that the spring is capable of
giving back this stored work. Again, the argument with Fig. 125,
like that of Fig. 123, can be extended to more than two bodies, and
we can generalize the conclusion as follows:

The work done by all external forces and reactions on an arbitrary
small displacement of a multibodied system in equilibrium, having
extensible springs and friction between its parts, is equal to the sum
of the work stored in the springs and the work dissipated by friction
due to that small displacement, provided any other internal forces
(category e, page 141) do not perform work on that displacement.

Unfortunately, we still have the word “provided”” with us, but now
it is hardly of practical significance to engineers, who seldom deal with
magnetic or ¢nternal gravitational forces in equilibrium systems.

28. Applications. The foregoing theory will now be applied to a
number of examples:
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The smooth inclined plane
The multiple pulley

A simple truss

. A balance

. Lazy tongs

The rough inclined plane

. The buggy wheel

. A system with springs

a. The Smooth Inclined Plane. In Fig. 126 the pulley as well as
the plane and block are supposed to be without friction. For what
ratio of weights W,/W is there equilibrium? Let W. go down through
a small distance 3, and consequently let W slide up the plane through

/_JZ]""”“
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Fie. 126. The frictionless inclined plane.

the same distance 6. The internal connections are frictionless, and
the rope is inextensible. Hence the statement of page 140 applies.
There are three external forces and reactions: Wy, Ws, and N. (The
rope tension is an internal force, which we should not even mention.)
The force N does no work; the displacement is perpendicular to it.
The displacement of W; in its own direction is —& sin «, negative
because it is upward, while W, points downward. Then

Wzs — W15 sina =0
or
We= Wisin a

b. The Multiple Pulley. Figure 127 shows a tackle consisting of a
fixed pulley, supported from the ceiling at O, and a floating pulley
carrying the load W. Assuming no friction in the pulley axles and an
inextensible rope, what is the ratio P/W for equilibrium? Pull down
at P through a small distance §. This causes the upper pulley to
rotate and the left branch of rope to rise through distance §, including
the point A of that rope. On the other hand, point B of the rope does
not rise, because it is directly connected to the ceiling at 0’.  The rope
does not slip on the lower pulley; thus the points A’ and B’ of the



APPLICATIONS 145

pulley, lying just opposite the points A and B of the rope, rise just
like A and B. The center of the floating pulley, being midway between
A’ and B’, therefore rises through a distance §/2. The external forces
and reactions of the systems are P, W, and the supporting forces at O
and O, the latter two doing no work because there is no displacement.

Fra. 127. The single floating Fia. 128. The multi-
pulley solved by the method of ple pulley,
work.

P does positive work P3, and W does negative work: —Ws/2. The
rope tension is an internal force. Then

Ps — —I%é =0 or = %
Figure 128 shows a similar tackle in which the upper or fixed block
and the lower or floating block carry four pulley wheels each. The
wheels are drawn apart to show how the rope passes over them;
actually, of course, the pulleys are close together. Again we ask for
the ratio P/W at equilibrium, with no friction in the pulleys and an
inextensible rope. As in Fig. 127, the only forces doing work are P
and W, and if P is pulled down through distance & and as a conse-
quence W is raised through distance ¢, then P§ — We = 0 or

P

w

To calculate ¢/8 we could trace the displacement through all the
branches of the rope from P to 0’, but it is easier to remark that if W
is raised through distance ¢, the eight pieces of rope holding up W

ol
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are shortened by 8¢, and since the rope is inextensible, this must come
out at P in the form of 5. Thus ¢/8 = 3§ = P/W.

c. A Truss. Figure 129 is a truss consisting of five hinged bars,
forming a square with one diagonal, loaded with forces P along the
other diagonal. We want to know the force in the diagonal bar under
this loading. To solve this we remove the diagonal bar and replace
it by forces X and — X, which then are considered as external forces
on the system of the four remaining bars. The small displacement
we give to the system consists of allowing the forces P to spread apart

Fra. 129. To find the force in the diagonal bar.

by a distance 25 (each force P is allowed to move through distance &
while the center of the square remains in place). As a result of this
the square becomes a diamond, and the diagonal of the forces X
becomes shorter, say by distance 2e.

If the forces X are considered positive if they pull the joints A4
and B closer together, then the X forces do positive work on the short-
ening distance and

2P§ +2Xe =0 or == —

The forces X come out negative, i.e., opposite in sign to what we con-
sidered positive: they push the joints 4 and B apart, and the bar AB
is in compression. The ratio 8/¢ has to be found by geometry, which
can be done as follows (Fig. 129b): Let the length of a side of the
square be I; then

OP = y = [sin §, OA =2 = lcos 8
8 = Ay =l cos 0 A9, e =Ar = —lsin 0 A0
8 lcos @ Af X

e R ee———e—m—— = —4 °= o= e
. Tsin 6 A6 cot § = cot 45 1 B
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Hence the compressive force in the diagonal bar of Fig. 129a is equal
to force P.

d. A Balance. Figure 130 shows a system consisting of four rigid
bodies: two straight bars and two T-shaped pieces, hinged together
at four points. The system is supported at A by a hinge, and at B
a pin on the lower straight bar can ride up and down between vertical
guides without friction. This gives the plane system three supports,
two at A and one at'B, which makes it statically determinate (page
110). The loading consists of a force P at distance 2a from the center,
held in equilibrium by a load X at distance 3a from the center. We
want to determine X when P is given.

Xrn--—Za----T-—a-,us-a-au_a_al
Z‘f

F1g. 130. In Roberval's balance the magnitude of the force X is independent of its
horizontal location.

A

To solve this we give the system a small displacement by inclining
the upper bar through a small angle, so that its right-hand hinge goes
down § and its left-hand hinge goes up 8. The lower bar follows this
movement and remains parallel to the upper one; the two T pieces
move parallel to themselves, the right one down and the left one up by
the same amount 8. The external forces are P, X, and the reactions
at A and B. These reactions do not perform work because the points
A and B do not move. Hence

Pi—X6=0 or X =P

This result is surprising, and the reader is advised to derive it by the
ordinary method of statics, involving four hinge forces with horizontal
and vertical components. This will entail an amount of labor greatly
in excess of that by which the answer was found here. However, after
the analysis is completed, we not only have the result that X = P
but also we know all the hinge forces and the bending moments in the
various bars.

e. Lazy Tongs. The system of Fig. 131 consists of six bars, each
of length 2a, hinged together at their ends and at their mid-points,
with two extra bars on top of length a. It is loaded with force P on
top, and we ask for the forces X at the bottom that are required to
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keep P in equilibrium. To solve, we give the system a small dis-
placement by allowing the forces X to come nearer each other by
distance 8, which has the result that the top P moves up through
distance ¢ with respect to the bottom. Then

X6 —Pe=0 or X=P—;

and the problem is reduced to the geometric one of finding the ratio
¢/6. Now in the triangle ABC the length AC is shortened by §/2, and
consequently BC is lengthened by a quantity called
z, while AB, being a bar, does not change its length.
This is just the same case as Fig. 129b, where we
found that the elongation of one side is equal to the
shortening of the other, or BC in Fig. 131 becomes
longer by 8/2. The geometry of BD, DE, etc., is
the same as that of BC, so that ultimately the top
point P moves up seven times as much as B, or

5 7
€

1
=3 and X=3;P

2

On account of the large number of bodies in this
system, the derivation of this result by the ordinary
Fio.131. Thelasy- method of repeated equilibrium equations for the
tongs mechanism consecutive bodies is very cumbersome indeed.
The reader should do this, first by noticing that the top bar 1 has no
loads along its length and is therefore in pure compression (of P/ V?2).
This establishes the load (by action equals reaction) on the top hinge
of bar 2. This bar has unknown forces at the lower end and in the
middle. Of the force in the middle we can reason that it must be
horizontal, because if it had a vertical component, say an upward one,
there should be an equal downward component on the middle of bar
3, by action equals reaction, but there should be an equal upward
component there, by symmetry, because 2 and 3 are situated exactly
alike. A force that is upward and downward at the same time must
be zero. Now the three unknown force components on bar 2 (one
in the middle, two at the lower end) can be solved for, and we are ready
to proceed to bar 4 and, after it, to bar 5. This is a lot of work, which
not only consumes time but also involves the likelihood of computing
errors. This example vividly illustrates the fact that for systems of
many bodies without friction or springs the method of work is usually
preferable to the method of components.
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f. The Rough Inclined Plane. Consider tbe inclined plane of
Fig. 126, but this time with friction under the block, as in Fig. 86
(page 87). We apply the statement of page 142 to a small downward
displacement & of Wo:

Wb — Widsin @ = fN§ (just going up the plane)

On the other hand, if W, is given a small displacement & upward,
and W, goes down the plane, we write

—Wsb + Wibsin @ = fN§ (just going down the plane)

When these equations are divided by 3, they are no different from those
of page 88. Besides, in order to finish the solution we must calculate
N, for which we need an equilibrium equation again, and so we lose
the prime advantage of the method of work, which consists of the
non-appearance of internal forces in the equations. Suppose we
should make the problem more complicated and ask for W, for the
case of friction both in the block and in the pulley axle, then the above
equations would acquire one more term on the right-hand side, expres-
sing the work dissipated in friction in the pulley. But the pulley
friction force is proportional to the normal pressure, which again is
proportional to the rope tension 7. Therefore, we would have to
find 7, and every advantage of the method of work would be lost.

g. The Buggy Wheel. We return to the question of Fig. 89 (page
92), in which we want to find the ratio P/W of the horse’s pull to
the buggy weight in the presence of friction in the journals. We give
the system a small displacement by allowing the axle to go forward
through distance 5 and the wheel to roll over the ground without
slipping, while the wheel turns through a small angle about the axle.
The external forces are the pull P, the weight W, the reactions from
the ground vertically up and horizontally. We do not care how large
these reactions are because neither of them performs work during the
displacement. (The ground friction force does no work because there
is no slipping or relative displacement between wheel and ground
horizontally.) Neither does the buggy weight W perform work.
Thus,

Ps = work dissipated in friction.

The friction force in the journal is fN, where N is approximately
equal to W. Now we need to know the distance through which the
bearing slips over the surface of the journal. The wheel turns through
an angle ¢ = §/R, where R is the wheel radius. Then the distance of
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slip at the axle is ¢r = &r/R, where 7 is the journal radius. Thus the
work dissipated in friction is fWér/R, and upon equating this to the
external work P3, we obtain the result of page 93.

h. A System with Springs. Figure 132 represents a system of three
bars of equal length @ hinged together and cross-braced by two springs,
of such lengths that they are unstressed when the bars form a squarc
asshown. The springs have stiffnesses k and 2k 1b/in., and the system

D is loaded by a sidewise force P. We want to

know the deflection under P and the forces in

% the two springs. Before proceeding with the

solution, the reader should turn to page 256

for an understanding of the meaning of a

7 ? spring stiffness ¥ and for the fact that if an

unstressed spring is either lengthened or

shortened by an amount § by a force, the
work necessary to accomplish this is 14k a2

Now we give the system (Fig. 132) a
small displacement, by allowing the top bar
to shift to the right by an amount §, which
transforms the square into a parallelogram.
As a consequence, the spring 2k is shortened

75) by 8/4/2, and the spring k is lengthened by
Fra. 132. The method of 9/ 12, as becomes clear from the sketch of
yvo::k .applieq to a system Fig. 132b.
involving springs. Now in Fig. 132a, the external forces
are P and the reactions at the bottom, but only P does work. The
spring forces are internal. Due to the displacements the springs'store
an amount of work equal to

1 §\ 1 s \*_3
1k(— 22k (=) =2ks?
2 (\/5) *3 (\/5) 4

The work done by the force P on the displacement 3 is not P3, but
1/2P3, because when 3 is zero the force P for equilibrium also must be
zero. The force P grows proportionally with & for equilibrium, so that
the work done is 1/2P3.

Applying the statement of page 143 to this case we have

1 3. . 2
Z =2 =2pP/k
2P8 2k8 ord 3 /

The force in a spring is k times its displacement which is 3/ V2, so
that the flexible spring k sustains a tensile force of (1/2/3)P and the
stiff spring 2k a compressive force of (2+/2/3)P.
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Historical Note. The method of work, as explained in pages 138 to 143,
was perfected more than two centuries ago and was then called the principle of
virtual velocities, There was nothing strange about such a name at a time
when one of the most eminent writers used the word “movement” for force or
velocity indiscriminately (page 217) and when kinetic energy (page 251) was
called “‘living force” or “‘vis viva.”

Most of those names died a natural death in the course of time, and by
about 1850 the nomenclature had boiled down to the simple one now in general
use, with the curious exception of ““virtual velocity.” By “virtual velocity”
was meant ‘“‘small displacement,” and the work done by a force was called the
“virtual moment” of that force. In the book ‘‘Statics” by Todhunter,!
which was a classic in its day, we read:

“The word virtual is used to intimate that the displacements are not really
made, but only supposed. We retain the established phraseology, but it is
evident from these explanations that the words ‘virtual velocity’ might be
convenient]y replaced by ‘hypothetical displacement’ . . . .

“The virtual moment of a force is the product of its intensity by the
virtual velocity of its point of application estimated in the direction of the
force. . . . If a system of particles is in equilibrium, the sum of the virtual
moments of all the forces is zero, whatever be the virtual velocity.”

After 1900 the ‘‘virtual moments” died and became “work,” and the
““virtual velocities” were toned down to ‘‘virtual displacements,” while the
principle became that of “virtual work,” but the word ‘virtual” itself has
persisted to this day in most books. The term ‘“method of work” as
employed in this book is not in general use.

Problems 145 to 153.

29. Stability of Equilibrium. Everybody (except Columbus)
knows that a body standing upright on a point support will fall over,
although by our theories, if the center of gravity is vertically above
the point support, the body is in equilibrium. The equilibrium of
the body is said to be ‘“unstable,” and in this article we propose to
investigate under which conditions equilibrium is stable or unstable.

Figure 133a shows a rod hinged at one end and subjected at the
other end to a force F in line with the rod. We assume absence of
gravity forces, 7.e., a weightless rod, for the purpose of this discussion.
The rod is in equilibrium, because the hinge reaction is a force F
equal, opposite, and in line with the force on top of the rod. Is this
equilibrium stable or unstable? The question, as stated, is meaning-
less, because its answer may be one way or the other depending on
circumstances we have not yet specified. So far we have talked about

! Fourth ed., 1874, Cambridge, England.
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‘““stability”’ only in the usual sense of the English language without u
precise scientific definition. Such a definition we now propose to give.

The equilibrium of a body is stable if the forces or moments acting
on it cause a small deviation from the position of equilibrium to be
decreased ; the equilibrium is unstable if the forces and moments tend
to increase a small deviation from that position; the equilibrium is
indifferent if the body remains in equilibrium in positions deviating
on either side from the position of equilibrium.

From this definition we see that stability cannot be judged in the
equilibrium position itself and that the behavior of the system in a
deviated position must be studied before conclusions can be drawn.
Now we return to Fig. 133¢ and deviate the bar by turning it through

L7 a4 [F

A

(a) (6) (c) (@)

F1a. 133. Stable (b), unstable (¢), and indifferent (d) equilibrium.
a small angle about the hinge. What does the force F tend to do?
The question is unanswerable because we have specified F only in the
equilibrium position and have not stated yet how the force will act
in the deviated position. Suppose that the force F is always passing
through point 4, as in Fig. 133b, for any small angle of deviation.
Then, clearly, F tends to push the bar back to its vertical position,
and, by definition, the equilibrium is stable. In Fig. 133¢ the force
F is vertical, and in 1334 it is in line with the rod for all deviations,
s0 that, by the definition, the equilibrium of Fig. 133a for the behavior
of 133¢ is unstable, and for the behavior of 133d, it is indifferent.

Other examples of the application of this definition occur if in Fig.
133a we omit the end force F and replace it by the weight force of the
bar, passing through its center of gravity. Then we have a situation
akin to that of 133¢, which is unstable. Or, if we turn 133a upside
down and have a hanging pendulous bar under the influence of gravity
only, the equilibrium is stable. The rule or definition given is suffi-
cient to investigate the stability or instability of any system, however
complicated. But there is another way of judging stability, by the
method of work.
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A force does positive work if its point of application moves in its
own direction, and it does negative work if the point of application
moves against it. Then, if the external forces tend to increase a devia-
tion, they evidently push in the direction of that deviation, and if the
deviation is allowed to increase, the external forces do positive work.
In the same manner we can reason that if the external forces tend to
decrease a deviation, they will do positive work if the deviation is
allowed to decrease, or they will do negative work on an increas-
ing deviation. Thus the definition of page 152 is equivalent to the
following:

The equilibrium of a body is stable if the external forces do negative
work on a small deviation; it is unstable if these forces do positive
work on a small deviation, and it is indifferent if they perform
zero work on such a small deviation from the equilibrium position.

Consider Fig. 133¢, for example. In moving the bar from the
vertical or zero position to the deviated position shown, the top of
the bar describes a circular arc about the hinge as center. Thus the
force F goes down slightly between those two positions and does posi-
tive work. In the case of Fig. 133d, the force F is always perpendicular
to its (circular) path and does no work. In Fig. 133D, if the deviation
is increased somewhat, the force does negative work, because its tan-
gential component is directed against the increase in displacement.

But on page 140, we saw that the work done on
a small displacement in a system in equilibrium is
zero, neither positive nor negative, which seems to
contradict the statement just made. The diffi-
culty lies in the order of magnitude of the work
done: as a first approximation, the work done in
each case, 133b, ¢, or d, is zero for a sufficiently
small displacement, because in each case the force " 134 niustrates
is substantially vertical and the displacement sub- the stability of the
stantially horizontal. It is only in a further, ;‘g;_’hbmm of Fig.
second, approximation that we see that the work
done is not quite zero; it is said to be ‘“zero in quantities small of
the first order and positive (or negative) in quantities small of the
second order.”

Let us look at the situation from another angle, with the help of
Fig. 134. In that figure we see three curves: b is a circle about 4 as
center, d is a circle about the hinge O as center, ¢ is a horizontal line.
The letters b, ¢, and d refer to the corresponding ones in Fig. 133, and
the curves are those on which the point of application of the force
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would have to move in order to do zero work. For instance, in case ¢
the force is always vertical and will do no work if moved along the
horizontal line ¢ of Fig. 134. 1In case 133b, the force will do no work if
moved on a circle about A4, because then it is always perpendicular
to its path. Now, returning to Fig. 134, the actual path of the point
of application of the force is the path of the top of the bar, curve d,
so that only for case d the work done is zero for displacements that
are finite. In case ¢ the force does positive work, because ¢f moved
along ¢, it would do no work; in reality it moves along d, and thus the
force descends. In case b the force does negative work. But in all
three cases, the work done for very small displacements from the center
position is zero (to first approximation) because all three curves
have the same horizontal tangent at the top.

Now let us investigate this analytically and take case ¢ as an
example. Let the small angle be 8, and let the length of the bar be 1.
Then the descent of the force or of the end of the bar is

1 —1cos8&=1(1— cos 6).
We can expand cos 6 into a power series (Maclaurin or Taylor series)

2 4

cos0=1—£2-+2—!— S
Neglecting terms with ¢* and higher powers, the descent of F is 16%/2,
an expression in which the term with 6 to the first power is absent, and
the term proportional to the second power of 6 is positive. The work
is said to be ““zero in quantities small of the first order and positive in
quantities small of the second order.” Summarizing, we can state
that

The work done by all external forces and reactions of a system on
an arbitrary small displacement is zero in terms of quantities small of
the first order if the system is in equilibrium ; the equilibrium is stable
if the work is negative in terms of quantities small of the second order;
the equilibrium is unstable if the work is positive in terms of quantities
small of the second order; the equilibrium is indifferent if the work is
zero also in terms of quantities of the second order; all of this pro-
vided that the internal forces do no work on the displacement.

The combination ‘“‘stable = negative work, unstable = positive
work” can be remembered more easily if we look at it as follows:
The scientific definition of “work’’ coincides in many respects with
the ordinary conception of that word, but in one respect the scientific
“work” differs radically from the “work” of common speech. A
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force, unless restrained by bearings or supports, will push a body in
its own direction. A force, therefore, will do positive (scientific) work
unless forcibly restrained from doing it and will continue to do positive
(scientific) work until it can do no more, which is completely opposite
to what any man or animal will do with (common-speech) work.

As long as a small displacement is associated with positive work,
the force will do it and continue to do it; the system is unstable. When
a small displacement means negative work, the force refuses to do it
(water refuses to flow uphill), and the system is stable. If the external
forces of the system consist of gravity forces only, the above statement
means that for a small displacement the center of gravity G moves
horizontally, or rather on a curve with a horizontal tangent; the
equilibrium is stable if G moves on a curve with an upward curvature,
as in the bottom of a trough; unstable if G moves on top of a hill.
This is evident if we think of a small heavy particle in a smooth bowl
or on top of a smooth sphere, but it is equally true for more complicated
cases, such as Fig. 135, for example. That
figure represents a half sphere to which is
attached a cone; the whole piece can roll with- N
out sliding on a horizontal plane. Is it stable
or unstable in the upright position? To inves- B
tigate this, let the body roll through a small
angle, so that the center line is no longer vertical. /
Instead of redrawing the figure in the deviated .
position, we draw a new, dotted, ground line pi 135. This is sta-
and turn our book until the dotted line is hori- ble in the upright posi-

. tion when the center of
zontal. Suppose that the center of gravity of gavity is below C; un-
the combined body were at C, the center of the stable when above C.
circle; then C would be just as far from the dotted ground line as
from the solid one; the equilibrium is indifferent. In case the center
of gravity were at B, the equilibrium would be stable, because B is
farther from the dotted ground line than from the solid one. A loea-
tion of the center of gravity at A would mean instability because A
is closer to the dotted line. When we sketch the paths of points 4,
B, and C with respect to the solid ground line for different positions of
the body, we recognize that B is at the bottom, of a trough, 4 is on
top of a hill, and C moves on a horizontal line.

Problems 154 to 160.




CHAPTER IX
KINEMATICS OF A POINT

30. Rectilinear and Angular Motion. In this chapter we propose
to study the motion of a point in space without considering the forces
that cause the motion. In the next chapter the relations between
force and motion will be considered, and then the “point’ will be
made a heavy point, or a mass-endowed point, which usually is called
a “particle.” Now, however, we do not care whether our particle is
heavy or not; we only study the geometry of the motion.

The first motion we consider is the simplest possible one, i.e.,
the motion of a point P along a straight line. The position of point P
at any time ¢ is determined by its distance z from a fixed origin O
on the straight line. Thus z depends on the time or

z = f(t)

Consider two instants of time ¢ and ¢ + At with the corresponding
displacements z and z + Az. During the time interval At the dis-
placement increases by Az, and the quotient Az/At is called the “aver-
age velocity during the interval At.” If, in the manner of the calculus,
we let At become smaller indefinitely, the average velocity converges
to a limit,

lim Az _dz _ t=0v

a0 At dt
which is called the instantaneous velocity, or shorter, the velocity of
point P at time ¢. The notation & which is shorthand for dz/d¢
and is pronounced “z dot” is the original notation employed by New-
ton (1642-1726) for the differential quotient. It is in use at present
only in the subject of mechanics and the dot always represents differ-
entiation with respect to time, and never with respect to any other
variable.

The velocity & or v of the point P may be different at different
instants of time. Let the velocity at time ¢ be v and at time ¢ + At,
let it be v + Av. Then during the time interval At the velocity
increases by Av and the quotient Av/At is called the ‘“‘average accelera-

156
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tion during the interval A¢.”” If At shrinks to zero we have

hmAv—-@—d—zx=b—x

a0 AL dt  di?
which is called the instantaneous acceleration, or shorter, the accelera-
tion of the point at time ¢. The Newtonian notation £ (pronounced
“z double dot”) again refers to two differentiations with respect to
time. The differential quotient dy/dx, representing the slope of the
curve y = f(x) is sometimes written y’ (y dash), but never . In
some books & is denoted by a; that notation will be avoided in this
text, as a usually is reserved for a constant quantity, mostly a length.

The displacement, velocity, and acceleration, all being time func-
tions, can be plotted graphically. This has been done for a hypo-
thetical case in Fig. 136, and the usual relations between ordinates,
slopes, curvatures, and areas, familiar from the differential calculus,
are illustrated in Figs. 136a, b, and ¢. Figure 136d is a cross-plot
between Figs. 136a and b, obtained by taking the ordinates of those
two figures for the same time ¢ and plotting them against each other
in Fig. 136d. The reader is advised to study Fig. 136 carefully, and
as an exercise before proceeding, to sketch the diagrams £ = f(z),
and & = f(&).

A simple and important example of the foregoing is the freely
falling stone. Let the point (the stone) at time ¢ = 0 be at a certain
height above the ground, where we place our origin z = 0, counting z
positive downward from that position. We specify that the downward
acceleration of the point is constant with respect to time, and we denote
this constant acceleration by g. What are the various diagrams?
The analytic solution involves integration:

£ = 9§ = g = constant
E=v= /gdt=gt+01
x=/ /(gt+Cl)dt=—2—-1—(11t+C'2

The constants of integration C; and C, are specified by the initial
conditions. We have stated that at ¢ = 0, z = 0, and substituting
that into the above result for x leads to C2 = 0. In addition, we now
specify that at ¢ = 0, £ = 0, which means that the stone has no
initial velocity and starts falling from rest. Substituting this into
the expression for & leads to C; = 0, This enables us to construct
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the diagrams 137a to c. To find v = f(z), we eliminate the time ¢
from v = gt and z = 34g#? with the result v? = 2gzx, plotted in Fig.
137d. ‘

The first man who studied and x
partially understood these rela-
tions was Leonardo da Vinei
(1452-1519), almost two centuries
before the invention of the calcu-
lus. He describes, in his famous
notebooks, the apparatus of Fig.
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F1a. 136. Displacement, velocity, and F1a. 137. The freely falling body.
acceleration diagrams.

138, consisting of two vertical boards, hinged together on one side
and covered with blotting paper on the inside faces. A leaking water

4

:
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tap lets drops fall down between the boards at presumably equal
intervals of time. When a string is suddenly pulled, the boards are
clapped together and the positions of the drops on the blotters can be
inspected. Leonardo observed that the distances between consecutive
drops increased in a “continuous arithmetic proportion,” which is a
way of saying that v = gt.*

Another simple and important ———

example is the rectilinear motion of . a a
a vibrating point, known as the
simple harmonic motion, and de- (a)
seribed by the equation .
z = asin ot \/
where @ is a constant length, called
f?t_ v=x
(6) \ /
¢ £
/ \ \/
I %
° (c) /\
t

Xfw

o(D) :
L\

F16.138. Leonardo da Vineci’s experiment. Fia. 139. The simple harmonic motion.

the ““amplitude’” of the vibration, and w is a constant of dimension
1/time called the “circular frequency” of the motion. Differentiating
this equation twice gives

aw cos wi
—aw? sin wt = —w?z

z
&

plotted in Figs. 139a to ¢. They show the vibrating motion along a
straight line between two points at distance a on either side of the

* Leonardo da Vinei, “Del Moto e Misura dell’Acqua,” reprinted in Bologna,
1923, p. 188.
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center origin 0. Positive ordinates on the diagrams mean displace-
ments, velocities, or accelerations to the right; negative ordinates mean
that these quantities are to the left. The relation between velocity
and displacement (Fig. 139d) is interesting. From the equations we

can write
z\2 » \?
(—) -+ (~——) = gin? wt + cos?wt =1
a 0w

or 2% + (v/w)? = a?, which shows that if we plot the ratio v/w against
z, the curve is a circle of radius a.

Now we turn our attention to another sub-

A ject, angular motion. In Fig. 140 let a point P

move on a circle of radius r and let the radius

A OP of the moving point P be at angle ¢ with

respect to a fixed radius OA. This line OA can

then be looked upon as the ““origin” of the

Fia. 140. Illustratesan-  variable ¢; and ¢ = f(¢) is called the angular

gular motion. displacement of point P, The angle ¢ can be

measured in degrees or in radians, the latter having the advantage that

the curvilinear distance AP, usually denoted by s, can be directly

expressed in terms of ¢

s=r¢p

In complete analogy with the linear displacement x along a straight
line, we can differentiate the angular displacement ¢ with respect to
time.

. _de
=

=

the result of which is called the angular velocity, usually denoted by
«, and measured in radians per second, revolutions per second, revolu-
tions per minute, or other similar units. Since one revolution equals
2r radians, an angular velocity of 600 rpm = 10rps = 20r radians/sec.
The angular velocity or angular speed « can be differentiated once
more:
2
pmo=-De_

U
S

which is named the angular acceleration. In some books this quantity
is written «, a notation which will not be used in this text, because a
by common usage means a constant angle. The angular acceleration
is the rate of change of angular speed of a wheel, and is zero for a
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wheel rotating at uniform angular speed. It is measured in radians
per second squared, or in similar units, such as revolutions per minute
squared, or even in mixed units like revolutions per minute per second.
The latter units are not recommended because they easily lead to
numerical errors. If at all possible, one should always work with only
one unit of length and one unit of time in each caleulation.

The question might be asked why we stop here, and why we don’t
keep on differentiating to % and higher derivatives. The answer to
this, as we shall see in the following chapters, is that the second deriva-
tive of the displacement, linear or angular, is of great importance,
whereas the third derivative hardly ever occurs in practice. The
quantity %, the time rate of change of acceleration, has some physical
meaning and has even been given a name: it is called “jerk” (Problem
309, page 432) but it is of no particular importance.

Problems 161 to 168.

31. Motion in Space. The location of a point P in spaee is de-
scribed by three numbers, usually the z, 7, and 2z coordinates of a
rectangular coordinate system. When the point moves through space
its location becomes a function of time and the coordinates z, ¥, and
2 are all functions of time. The three equations

z=f0), y=£H, 2z=50

then describe a curve in space; they are known as the three ‘‘para-
metric’’ equations of a curve with the time ¢ as  parameter.”

By eliminating ¢ from between the three equations, we obtain two equa-
tions in z, y, and z, not containing ¢{. Each of these equations represents a
surface in space and the pair of equations determines the curve of intersection
of the two surfaces.

In Fig. 141 the space curve along which the point moves is drawn,
and at time ¢ = 0 the point is at a certain location on the curve. This
point we call O, the origin, and lay our coordinate axes through it.
At some other time ¢ = ¢ the point is located at P, and a little later,
at ¢t = ¢ + At, the point is located at P’. The vector OP is often
denoted by s, the first letter of the Latin spatium, meaning space or
distance. The small vector PP’ then is written As, and OP’ is s + As,
where the + sign has to be understood vectorially; i.e., a parallelogram
construction sum, and not an algebraic sum. The vector OP = s has
the three components z, y, z; the vector OP’ = s + As has the com-
ponents z + Az, y + Ay, z + Az, while the small vector As has the
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components Az, Ay, Az, as can be seen in Fig. 141. Then the quotients

Az Ay Az

~A—t; Z_t—, and Z-t-
are called the “average velocities” during the interval At in the z, ¥,
and z directions, and by letting At become small indefinitely, in the
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Fia. 141. The displacement and velocity of a point moving in space.

manner of the calculus, these average velocities go to the limiting
values
T y z or d—x: ﬂl; (—i—z-
T dt’ dt di
which are the (instantaneous) velocities in the z, y, and z directions.
The numerical value of the length of the vector As is designated as
As, and the quotient As/Af is called the ‘“average velocity during the
interval At,”” and its limiting value for small At is
$or g—s
dt
the velocity of point P. In Fig. 141 it is seen that As is related to
Az, Ay, and Az as the diagonal of a small parallelepiped with sides
Az, Ay, and Az. Division by A¢ and going to the limit does not alter
this relation, and therefore
The velocity of a point P in space is a vector of value §, directed
tangent to the path of P, and is the vector sum of three component
velocities, %, y, and 2. :
Accelerations are deduced from velocities by a process of dif-
ferentiation, just as velocities were deduced from displacements by
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differentiation, and the properties of accelerations are very similar to
those of velocities. In order to simplify the figure, we consider motion
in a plane instead of in three-dimensional space, and Fig. 142a fis
the two-dimensional equivalent of Fig. 141. The curve of Fig. 142a
is the path of the point in the plane, showing the point in two positions,
at time ¢ and at time £ 4 Az. The increment As and its two components
Az and Ay are almost equal to v A, & At and g Af (but not exactly equal,
because At is not exactly zero); this is indicated by the symbol =,
meaning ‘‘approximately equal to.” The velocity vectors v, &, 7 in
Fig. 142a are in the direction of the increment vectors As, Az, Ay.

Yy As:wdt\ Fy P 37
dy= LA
1 At D I
v~ A dusodt
§ | | l "Zt | or
s+ds | .y ————==

I | vtd—] }

0o I | x 9 { RE:
Axxxdt Ax=xat
(a) 6)

Fic. 142. Velocity and acceleration of a point moving along a plane curve.

Now we turn to Fig. 142b, where OQ = v is (approximately) parallel
to PP’ = As of the previous figure, and the velocity vector v 4+ Av is
approximately parallel to P’P’ in 142a. Again the velocity increment
Av, when divided by A¢, gives the average acceleration during the
interval At, and when A¢ becomes very small, this ratio converges to
dv/dt = ¥ = 8, the acceleration.

The acceleration of a point P in space is a vector of value ¥ or ¥,
directed tangent to the curve @, formed by the end points of the
velocity vectors, and is the vector sum of the component accelerations,
£, ¢, and 2.

The part of this sentence that is of practical importance is printed
in heavy type; the fact that the direction of the acceleration is tangent
to the Q curve (Fig. 142b) is hardly ever used, but it ¢s important to
note that the acceleration vector is not tangent to the path, or P curve
of Fig. 142a.

A useful way of visualizing and memorizing the direction of the
acceleration is by resolving it into normal and tangential components.
The curve of Fig. 143 is the path of point P, and two positions of that
point are shown: P at time ¢ and P’ at time ¢ -+ Af. The velocity
vectors at those two instances are drawn in heavy line, tangent to
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the path, and at point P’ the velocity v of point P is drawn again in a
thin line. The vector difference between the velocity at P and the
velocity at P’ is Av as shown. In the previous analysis (of Fig. 142)
this Av was resolved into dr and dy components. Here we do some-
thing else and resolve Av into components along and across the velocity
vector v + Av, as shown. We now proceed to calculate these com-
ponents for the case that P and P’ are very close together. First we
draw lines at P and P’ normal to the path or, which is the same thing,
normal to the velocity vectors. These lines intersect at C, and if
the distance PP’ is made smaller
indefinitely, the angle Ap at C
v+dy becomes smaller also and C con-
verges to a point called the cen-
ter of curvature of the path at
point P. The angle between the
two velocity vectors is also Ag.
The line AB is normal to P'B
and for very small Ay it is prac-
tically normal to P’A as well.
o X Then, for A¢ measured in
Ft!i%n 1:1_3; N‘zz;;ma.l and tangential acceler-~ radia,ns, we have AB = v Ap.
* powmt. But in triangle CPP’ we have
PP’ = As = R Ap, when R is the radius of curvature at P. Eliminat-
ing Ap from these equations, we find for the increment in speed in a
direction normal to the velocity

AB = (M), = —%As

Dividing both sides by the time interval A,

a) _ v s
At ).~ R At

For the limit as A¢ goes to zero this becomes

v v?

(';')n=—Rv=—1§

This expression can be written in another form, by noting that in
Fig. 143

As = R A, %%:Ri—f; s = Ro

v = Rw = R¢ ()
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Substituting this into the above we can write for the normal accelera-
tion

2
() = ?R = R = ¢*R = Vo (6a)

This acceleration is directed toward the center of curvature, C, and
therefore is often called the centripetal acceleration (which means the
center-seeking acceleration).

Now, in Fig. 143, we turn our attention to the component BD of
the velocity increment, which, for smaller and smaller Ag, comes
nearer and nearer to (v + Av) — v = Ay, and, dividing by At and going
to the limit Az = 0, we find for the tangential acceleration

@i=0=38 (6b)

The acceleration vector in space can be resolved into all sorts of com-
ponents, of which practically the most important ones are the Car-
tesian components, &, 7, Z, or the normal (»?/R), and tangential (?),
components.

It is significant that there are three Cartesian components, while in the
other resolution there are only two components, normal and tangential. The
derivation of the latter components was done on the two-dimensional curve
Fig. 143. In case of a skew space curve we take three points on that curve
P, P, P”, as in Fig. 142q, and pass a plane through these three points. When
the three points get closer and closer together the plane becomes the osculation
(kissing) plane of the curve at point P. The analysis of Fig. 143 can then be
applied in the osculation plane of the curve at the point P, with the result that
the normal component of acceleration in the plane of osculation is v2/R, while
the normal component of acceleration perpendicular to that plane is zero.

It depends on the problem at hand, which of the two methods of
resolution happens to be most convenient or useful. As an example
of the equivalence of the two ways of resolving the acceleration, con-
sider the uniform motion of a point P around a circle (Fig. 144) with
a constant speed v = wR. The angle varies with time: ¢ = wl.
The velocity v is resolved into Cartesian components

& = —psin of and 9 = v cos wt

of which # is negative because it points to the left, the negative z
direction. Differentiation leads to

# = —vw cos wt and j = —ovw sin ot
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with both components of the acceleration negative or pointing toward
the origin O, while the ratio of their two magnitudes is as cos wt:sin i,
which makes the resultant point toward the origin, as a simple sketch
quickly shows. The magnitude of the resultant acceleration is (the
two components are perpendicular);

V' (—vw cos wh)? + (—vw sin wf)?

- v?
vw V/cos? wl + sin2 wf = vw = 3= w’R

It

Approaching the same problem from the other direction and resolv-
ing by Eqgs. (6), we realize that the tangential component is zero
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F1a. 144. TUniform motion of a point along a circle.

because the tangential speed is constant, so that # = 0. The normal
component is v2/R, giving the same answer as before with much less
work. For this example, therefore, the Cartesian method of resolu-
tion is awkward and unsuited, whereas the other method is naturally
adapted toit. In the nextexample the converse will be true.

Consider the motion of a point P, such that the horizontal accelera-
tion # = 0 and the vertical acceleration §j = —g (Fig. 145), which,
as we will see later, represents the motion of a bullet or projectile.
Using the rectangular-component method, we integrate the two
equations specifying the motion.

CiJ=Cl, i :l]=—gt+Cs
2
z = Cit + Cs, y=—£’;—+cat+04
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The four integration constants are determined by four initial condi-
tions. Suppose we spzcify that at time ¢ = 0, both z and y are zero,
which is another way of saying that we lay the origin of coordinates
at the location of point P at the instant { = 0. From these two condi-
tions we see that C» = Cy = 0, and only Cy and C; are left, which, as
we see from the equations, represent the x and y velocities at time
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Fia. 145. The motion of a projectile.

t = 0, which we then might as well call vo, and ve,. Thus
2
T = o, and y= —-%+th

are the parametric equations of the path. The ordinary equation of
the path is obtained by eliminating the parameter ¢ from between the
two above equations, giving

2
==-9(=E z
y - 2 (UOz) + vOy (003)

which, being a quadratic equation between z and y, represents a
conic section, in this case the parabola of Fig. 145. At each point P
of this parabola the acceleration is directed downward and is equal to
g, which is very simple. ‘To put this result in the other form requires
first finding the value of the velocity at P and the value of the radius
of curvature, R, of the parabola at that point. The normal component
of acceleration is then »%/R and the tangential is 4. This, however,
represents a large amount of algebra, and obviously this is a problem
to which the Cartesian-coordinate approach is much more suited than
the normal-tangential-component method.
Problems 169 to 171.

32. Applications. The foregoing theories will now be applied to
three cases:
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. The crank mechanism
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. The quick-return mechanism of shaping tools

. The rolling wheel, or cycloidal motion

a. The Quick-return Mechanism. This device is shown schema-

tically in Fig. 146 and consists
angular speed ¢. The arm OAP

of a crank CA rotating at uniform
can oscillate about the hinge O, and

is pushed by the crankpin A through a slide mechanism. The point
P is again mounted on a slide on the arm OAP as well as on the hori-
zontal guide O,P, while point A runs uniformly around the circle.
The object of the mechanism ig to attach to P the cutting tool of a

y

at

|

Fra. 146. The quick-return mechan-
ism.

01P = .

shaper that cuts going one way
only and is idle during the return
stroke, which therefore has to be
made as quickly as possible. Now
P moves from its extreme right
to its extreme left position while
A moves from A, to 44, via the top
of the circle, while the return stroke
takes place while A moves from 4,
to A, via the bottom of the circle
in considerably lesstime. We want
to calculate and plot the velocity
and acceleration of point P. In
order to do this we first choose as
origin the point 0, and designate

Then we have to express z in terms of ¢ by geometry. To

that end, draw the perpendicular AB and note that

AB = asin ¢

OB = 0C + CB = 2a + (—a cos ¢) = a(2 — cos ¢)

By the similarity of triangles O0AB and OPO,, we have

0P _ AB
0,0 OB

or
so that

x = 4a

& _ _osing
40  a(2 — cos ¢)

sin ¢
2 — cos ¢

This formula enables us to caleulate the position x of P for every posi-
tion ¢ of point A, and the relation is plotted in Fig. 147. To find the
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velocity of P, we differentiate the displacement.

oot drde_ ds
PEYTE Tdedt T Yde
.. €08 ¢(2 — cos p) — sin p sin ¢
= 4a¢ (2 — cos ¢)?
.2co8¢ — 1
¢(2—OOS¢)2

This result again has been plotted in Fig. 147. We note that a¢ is the
tangential velocity of point A along the circle and that the other
factors in the expression are pure numbers.

= 4a

°T .é‘//\‘
4 s\\ /; \
T\ —e v/
80 2 /%/4'0 (§7I \
3 3“& e v/ \
Py 2 s
R:g -
0 ! 1 L I mpm T ' 1
30 60\ 90 -2 B0 18 0 240 270,300 330 /360
! l‘- £ g
214 /’ velocity
\ /
3 —\\ ,I
4+ \ /
5L \\l/

F1a. 147. Displacement, velocity, and acceleration of the rectilinear motion of point P
of Fig. 146.

To find the acceleration of P, the velocity has to be differentiated,
and in that expression the length a as well as the angular velocity ¢ are
constant with time, while only ¢ is variable. Thus

_dve _dvede _ . dvp

T H T A d e
= dgg? —2sin p(2 — cos ¢)2 — (2 cos ¢ — 1)2(2 — cos ¢) 8in ¢

(2 — cos @)t
— —8as? sin ¢(2 —cos @) + (2cos ¢ — 1) sin ¢
¢ (2 — cosg)3
- _ ., 8in o(1 4 cos ¢)
8a¢ (2 — cos ¢)3

This is the third curve plotted in Fig. 147. The quantity a¢? is the
centripetal acceleration of the point A and the other factors in
the expression are pure numbers. Thus, although the analysis and the
differentiations are a little complicated, the result obtained is very
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general; we have the displacement, velocity, and acceleration for every
position of angle ¢. The displacement of P is expressed in units equal
to the radius of the crank; the velocity of P is in units equal to the
speed of the crankpin 4; and the acceleration of P in units equal to
the acceleration of A. Later on (page 208) we will see a graphical
method for finding these results.

F1a. 148. The crank mechanism,

b. The Crank Mechanism. In the crank mechanism of Fig' 148
the crank OC'is supposed to rotate at uniform angular velocity

w = ¢ = constant.

The crank radius is r and the connecting-rod length PC is I, usually
between three and four times as large as ». We want to know the
position, velocity, and acceleration of the piston, point P. For the
analysis we draw and write two auxiliary quantities into the figure:
£CPO = ¢ and CD, the normal on OP. Choose point O as the origin
and call OP = z, positive to the left. The angle ¢ is counted from
line OP, and we have ¢ = wt. Then

zp = OP = 0D + DP = rcos ¢ + lcos ¢

For the purpose of eliminating the auxiliary angle ¢ we write the length
CD in two ways: as a side of triangle OCD and as a side of PCD.

CD =rsin ¢ =lsiny
Hence
r

l

2
cosy = I =smiy = ,/1 —%sinqu

Substitute this into the expression for z».

2
T =r005wt+l«)1 -—%sinzwt

siny = s sin ¢,

and
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which is the answer for the position of the piston expressed as a fune-
tion of the time . We should now differentiate this expression twice
to obtain the other two required answers for # and %, and we should
then plot them in a figure like 147. However, we do not do that, for
the reason that the differentiation of a square root is more complicated
than we like it to be and that we can make a simplification leading to
an answer which is more clearly understandable and of sufficient
accuracy. We note that r/l is about 14, so that 2/I* = 1{g and
r? sin? wt/1? is less than that.

An expression of the form 4/1 — ¢ can be developed into a power

series,
2
’\/1—-6-‘—‘-1—%-—%—-

and for ¢ = }{g the third term is about 1/2,000. If, therefore, the
third and all following terms are neglected, an error of 1 part in 2,000
is involved, which is entirely acceptable. Thus

r?

Zp = 1 cos wt + | — 53 8in? wt

2l
of which the first term is OD in Fig. 148, the second term is CP,
and the third is almost the difference betweer CP and CD. Differ-
entiate this expression

Ep =~ Up = —Tw (sin wt -+ % sin wi cos wt)
. r o
= —rw{sin wt + 5 sin 2w
21
Differentiating once more, we obtain
Ep = —rw? (cos wt + 2— cos 2wt>

The parentheses in both expressions are pure numbers; the factor rw
in the expression for &p is the (tangential) velocity of the crankpin C
and rw? is the (centripetal) acceleration of the crankpin. Figure 149
shows these relations, being a plot of the two above formulas for the
case r/l = 14. Tt is seen that the maximum piston acceleration is 25
per cent greater than the centripetal acceleration of the crankpin and
occurs at the dead-center position far away from the crank center.
The thin dotted lines represent the first terms in the parentheses of
the formulas, and they can be interpreted physically as the velocity
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and acceleration in the case of a very long connecting rod I/r = .
In that case the motion reduces to a simple harmonic one (page 159).
On page 199 we shall return to this problem with a graphical method.

Fi6. 149, Velocity and acceleration of the piston P of Fig. 148 for a uniformly rotating
crank as a function of the crank angle.
¢. The Rolling Wheel. The third and last example of this article
will be the motion of a point on the periphery of a rolling wheel of
radius a. Figure 150 shows the wheel in full line in the position it
occupies at ¢ = 0 with the point P,
to be studied, at the bottom. The
dotted position occurs after the wheel
has rotated (at uniform speed)
through an angle ¢ = o, without
slipping, so that the wavy straight
line PQ’' and the wavy circular arc
F1c. 150. Construction of a point P P’'Q)’ have the same length and have
of ihe path f » poripheral point of & heen rolling over each other. Thus
we can graphically construct the
position of P for each angle ¢, and analytically we can read from the
figure

Zp = ga — a sin o, yr = a(l — cos ¢)

in which the angle ¢ = wt is measured in radians. The above pair of
equations determine the path: they are the parametric form of these
equations. The ordinary form, being a single equation in x and y,
could be found by eliminating ¢ between the above two equations.
However, in this case that is very difficult algebraically, and therefore
we will not do it but will retain the parametric form. The path of P
is known as a cycloid, and has the shape shown in Fig. 151. The next
step is differentiation of the position equations.

z = ap(l — cos ¢), Y = apsin ¢
& = a¢? sin o, ¥ = ag?cos ¢
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In these expressions ¢ = w is the constant angular velocity of the
the wheel. Again a¢ can be interpreted as the speed the point I’
would have, if the wheel were not rolling but were only rotating with
point O fixed; and ag? would be the centripetal acceleration of P in
the same case. The plot of Fig. 151 shows these relations for four
points, 90 deg apart in ¢. The velocity vectors at these points are
shown in thin lines; the acceleration vectors in heavy lines. In both

F1a. 151. Velocities and accelerations in various positions along the cycloidal path.

cases the radius of the circle is the scale for the unit velocity a¢ and
the unit acceleration ag?. The reader should check the results shown
for these four points against the analytical results and sketch in for
himself some intermediate points ¢ = 30, 45 deg, etc. Also, the reader
should deduce from the formulas that the total acceleration vector
has the magnitude aw? independent of the location ¢, and is always
directed towards the center of the wheel. The velocity vector is
tangent to the path (page 163); the acceleration vector is not, and is
purely tangential at point 1, purely centripetal at point 3, and mixed
at 2and 4. To find the acceleration at point 2 from its tangential and
normal components, involving a calculation of the radius of curvature
of a cycloid, obviously would be a complicated procedure. In this
example, therefore, the Cartesian-component method is greatly to
be preferred. In the chapter on relative motion (page 298) we shall
understand more clearly than we can now why the acceleration vector
is always directed toward the center of the wheel.
Problems 172 to 182,



CHAPTER X
DYNAMICS OF A PARTICLE

33. Newton’s Laws. In this chapter we shall deal with dynamies,
which is the part of mechanics concerning itself with the relation
between forces and motions. Sometimes the word ‘‘dynamics”
is used to include kinematics as well and then the term ‘kinetics”
applies to what we call “dynamics’’ here. A particle, also sometimes
called “material particle” or “material point,” is defined as a massive
point, or as a body with a definite mass but of zero dimensions. This,
of course, is a mathematical abstraction; no such “particle” in the
strict sense of the definition can possibly exist in reality, but the laws
of mechanics are commonly expressed in terms of it. The actual
bodies encountered in practice under certain conditions will “act like
particles.” Later (page 213) we will see what these conditions are
precisely; for the time being we will think of a particle as a small body
with a certain mass or weight.

The laws of dynamics were entirely unknown to the ancient Greeks
and Romans; their discovery was the first great scientific achievement
of our present Western civilization. It started with Leonardo da
Vinci (1452-1519), who made many experiments and wrote his
findings down in a series of notebooks, which, however, were not
published until several centuries later, so that Leonardo’s influence on
the development of the science was practically zero. The next great
name is Galieo (1564-1642), who published his theories in a book
entitled ““Discorsi e dimostrazioni mathematiche,” which contained
the laws of dynamics in a primitive form, and on which Newton based
his work. Isaac Newton (1642-1726) in 1687 published his famous
“Principia” (‘“‘Philosophiae naturalis principia mathematica”), in
which the laws of dynamics were not only set forth, but were treated
with a new mathematical method, very much suited to the purpose,
the calculus. Newton, however, was so far ahead of his time that only
a very few people could understand his writings, and during practically
the whole following eighteenth century a series of brilliant scientists
worked out the consequences of Newton’s great publication. The
most important of those were Euler (1707-1748), John Bernoulli

174
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(1667-1748), Daniel Bernoulli (1700-1782), d’Alembert (1717-1783),
and Lagrange (1736-1818). Therefore, the discovery and formulation
of the laws of mechanies, like most great discoveries, was not the work
of one man alone, but Newton’s contribution is so preponderant, that
the laws are called by his name. They are

First Law. A particle on which no forces are acting has zero
acceleration.

Second Law. A particle on which a force is acting experiences an
acceleration in the direction of that force, proportional to the force
and inversely proportional to the mass of the particle.

Third Law. Action equals reaction, or the forces acting between
two particles are equal and oppositely directed.

In all of these statements, ‘“‘force” is as defined on page 3, and
includes only direct-contact pushes or pulls and the force of gravity,
but excludes inertia forces or centrifugal forces, which will be intro-
duced and defined on page 211.

The first law is no more than a special case of the second law.
It is the basis of all statics, but it is more than that, since the term
‘“zero acceleration’ not only comprises the state of rest or equilibrium,
but also the state of uniform velocity. Therefore, by the first law, a
particle on which no force is acting retains its velocity indefinitely,
in magnitude as well as in direction. An automobile coasting on a
level road would retain its speed forever, if no friction force or other
retarding forces were acting. A bullet in horizontal flight will
retain its horizontal speed except for the retarding action of air
resistance.

Newton’s third law of action and reaction is of great importance in
statics as well as in dynamics and has been discussed on page 4 and
in the several subsequent applications.

We now turn to the second and most important of Newton’s laws,
and in order to express it in a formula, we choose a coordinate system
with the x axis along the direction of the force F., and denote the mass
of the particle by m. Then

£ = constant X ﬂ'
m

In this equation the force is measured in pounds and the acceleration
in feet per second squared or inches per second squared, but since this
is the first time we encounter ‘“mass,” we have as yet no unit for it.
In order to make the equation as simple as possible, we choose the
unit of mass so as to make the constant equal to unity, and thus
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The unit of mass equals the unit of force divided by the unit of
acceleration, or 1 1b/1 ft/sec? or 1 1b ft~! sec?

In case it is not convenient to choose the z axis in the direction
of the force and hence the force F is directed obliquely in space, we can
resolve that force into its three Cartesian components F., F,, and F,,
by page 102. Similarly by page 163 we can resolve the acceleration §
into three components &, ¢, and 2. By Newton's second law the total
acceleration § is in the direction of the total force F, and by pages 102
and 163 the parallelepiped of acceleration is geometrically similar to
the parallelepiped of forces, or

But, by the second law, the last ratio equals the mass m, so that we
deduce

F, = méi
F, = mj (7
F. = m3

a set of equations expressing Newton’s second law in terms of Cartesian
coordinates. More generally, if the force acting on a particle is
resolved into components along any three arbitrary directions in space
(not necessarily perpendicular or Cartesian), each component force
equals the mass multiplied by the corresponding component of the
acceleration vector. Applied to the normal (centripetal) and tan-
gential directions, the equations become

Fg = ms
F,.=m';—; (7a)

A particular case of Eq. (7) is the freely falling stone. The only
force acting on the particle is the attractive force of gravity, called
the “weight,” denoted by W. If we choose the coordinate system with
the z axis vertical, pointing downward, Egs. (7) become

W = mi = mg
0 = my
0 =mz

The downward acceleration due to gravity has been measured care-
fully by many experiments; it is commonly denoted by the symbol g
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and is found to be on the average

W = g = 822 ft/s0c? = 386 in. /sec? ®
The value of g differs with the location on earth and with the height
above ground; these variations are so small that they can be neglected
in almost all engineering applications. Equation (8) expresses the
relation between mass and weight, and enables us to visualize the size
of the unit of mass. Consider for example a pound weight, which is
1/0.28 or about 4 cu in. of steel. The earth pulls on this piece of steel
with a force of 1 Ib, and that force gives it an acceleration of 32.2 ft /sec?
or 32.2 units. The same force of 1 1b applied to a larger piece of steel
will accelerate it slower, by the second law; in particular, if the 1-1b
force acts on a piece of steel weighing 32.2 1b, the acceleration will be
1 ft/sec? or 1 unit. Thus the unit of mass is a piece of steel weighing
32.2 ]b with a volume of 32.2 X 1/0.28 = 115 cu in. This unit will
always be referred to in this book as Ib ft—! sec?; in other books it is
sometimes called “slug.”

The pound, foot, and second are the units in common use among
engineers in the English-speaking world. Other systems of units exist,
differing from the above in two respects: (a) by the adoption of mass
as the fundamental unit, with force derived from it instead of the other
way around as above, or (b) by the adoption of metric units instead of
English units. The four possibilities are shown in the table below,
the fundamental units being printed in heavy type.

No. 1 No. 2 No. 3 No. 4
Length..... foot (ft) ft meter centimeter (cm)
Time....... second (sec) sec sec sec
Force...... pound (Ib) 1b ft sec™? kilogram (kg) |gcmasec—2(dyne)
(poundal)

Mass....... Ib ft~1gsec?(slug) | pound (Ib) kg m~1 gee? gram (g)
Name...... English |, ... Metric engineer-| The cgs system

engineering ing
Used by....| Engineers in Nobody Engineers out- | Physicists every-

US. & UK. side US. & where

U.K.

In this book we will always use the English engineering system of units,
No. 1 in the table, but the word “slug” will be avoided. The cgs
system, No. 4 in the table, is universally used by physicists, who prefer
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to make mass fundamental and force derived, because the subject of
statics is of no importance to them. Also physicists now generally
use metric measure even in English-speaking countries. The system
No. 2 has had some champions in the recent past, but is now almost
abandoned, certainly by engineers, who do not like to use the weight
of about 14 oz of steel (the poundal) for the unit of force in all their
statical calculations. But strictly speaking, the expression ‘“nobody”’
in the table should be interpreted as “hardly anybody,” as in Gilbert
and Sullivan’'s ““Pinafore.”

34. Rectilinear Motion of a Particle. In this article the foregoing
theory will be applied to the following cases:

a. The ball with two strings
b. The smooth inclined plane
¢. The rough inclined plane

d. The simple vibrating system

a. The Ball with Two Strings. Figure 152 shows a heavy cast-iron
ball, several inches in diameter, of weight W, suspended from above
by a thin cotton thread, and having an identical
thread hanging down from it. When we start
Fra. 162. The pylling down on the lower string, which one of
classical exper- . . .
iment of the the two strings will break first? Considered as
i‘;:"%;ﬁ“ ‘Eﬁ a problem in statics the answer is obvious.
cotton threads. 'The bottom string sustains the force F, and
7 the upper string the force F + W, which is
larger, so that the upper string will break
first. This will actually happen if we pull down slowly. But when
we give a sudden, sharp pull to the lower thread, it will break
and the ball remain suspended. The explanation of this curious
behavior is that the threads are elastic and have a certain elon-
gation associated with the tensile force sustained by them. Before
the upper thread can carry more than the weight W, the ball must be
allowed to go down somewhat. By giving a quick pull to the lower
thread the force in the lower thread can be made quite large and this
large force will accelerate the ball downward. But this takes some
time and before there is any appreciable downward displacement the
lower string has snapped. A variation of this experiment consists in
placing the ball with just a single thread attached to it on a flat table.
By a gentle pull, the ball can be dragged along the table at uniform
speed, the force in the thread being equal to the friction force between
ball and table. A quick pull, however, can easily bring the thread
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force to 10W, which will break the thread in, say, 0.001 sec. The ball
then is subjected to an acceleration 10g during that short time, and
will hardly move. It will have a very small velocity at the end of the
0.001 sec, and that velocity will soon be destroyed by the retarding
action of the friction force, and if the pull has been quite sudden, the
ensuing displacement will be hardly visible.

b. The Smooth Inclined Plane. The block of Fig. 153 lies on a
smooth inclined plane, and is shown with all N a
forces acting on it. These forces are not in
equilibrium, and hence the block or ‘“particle ”’
will not remain at rest. We choose a coor-
dinate system with the z axis along the incline
pointing downward, and with the y axis per- ¥
pendicular to the incline pointing upward, Fie.153. The frictionless
and assume that the block does not leave the 1lined plane.
plane, so that y = 0, and consequently y = § = 0. Then the Newton
equations (7) are

B

a

In the z direction: W sin « = mi
In the y direction: N— Weosa=mj=0

The second of these gives N = W cos « as in the static case. Remem-
bering that by Eq. (8) m = W /g, the other equation leads to

% =gsin a

or the acceleration down the plane is a fraction of g, and the motion
down the plane can be described as a retarded free fall. For a = 0
there is no acceleration, and for a = 90 deg there is a free fall with
acceleration g. This result was known to Galileo, who put forward
the following question. Suppose the inclined plane is hinged at A4
(Fig. 153), enabling us to change the inclination at will, and suppose
we start the block from A at rest at time ¢ = 0. How far will it slide
during the first ¢ sec for a given constant value of «, and if we plot the
end point of travel on the plane as point B, what will be the locus of all
points B for various angles of inclination «? Obviously for a = 0 the
block will not move, and B coincides with A. For another angle «
the distance AB = z is found by integrating twice the expression
i = g sin « with the result

. t?
z = (g sin ) 3

Then, to answer Galileo’s question, consider ¢ constant and a variable,
¢4 )
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so that £ = constant X sin . In Fig. 154 the distance AB is plotted,
and the line BC is drawn perpendicular to AB, leading to point C.
It is seen that AB = AC sin o, so that if we keep AC constant, we can
vary a, and find point B’ for a different a, by making ZCB’'A = 90°.
Therefore, the locus of B is the locus of the apex of a right-angled
triangle on AC as hypothenuse, and this locus is a circle with AC as
diameter. Galileo used this result for an experimental test setup
to check the law s = }4gt2 of free-falling
bodies. He could not do it for the real case,
because the bodies fell faster than his primi-
tive time-measuring apparatus could handle.
In order to slow down the free-falling motion,
he used an inclined plane, and in order to avoid
friction he used rolling cylinders instead of
sliding blocks. The “particle” theory does
not apply to rolling bodies, as we will see on
Fro. 154 Galileo's ox- Dage 242, but Galileo did not know that and
fﬁ;i‘;fgtl-,oil'f:;e}g {;’fc‘::av‘;{ was satisfied with the results.
of a block sliding down a c. The Rough Inclined Plane. TFigure 155
:m;%‘;‘:‘h;:g:gggﬂ;gfn?r shows a (block behaving like a) particle on a
during & given time ¢, for rough inclined plane, with the forces acting
various angles of indline- op the particle. The friction force has been
tion a, is a circle. . . . .

given the magnitude and direction correspond-
ing to a downward sliding motion. Choose a coordinate system along
and across the incline, as shown, and write the Newton equations
[Eqgs. (7)], assuming that the particle does not jump off the incline
but slides down with an unknown acceleration Z.

W sin @« — fN = mi
—Weosa+ N=mj=0

From the second equation we solve for the normal force N and substi-
tute the result into the first equation, remembering that by Eq. (8)
m = W/g. This gives

sin a — fcos a =

Q8

or
% = g(sin @ — f cos a)

The parenthesis is a pure number, less than 1, so that the acceleration
down the plane is seen to be a certain fraction of g. It is seen that for
a sufficiently large value of the friction coefficient, the second term in
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the bracket becomes larger than the first one, so that £ becomes nega-
tive and the block slides uphill, which is contrary to the assumption
under which this result was obtained. If the block would actually go
uphill, the force fN would be reversed, and by Fig. 155 clearly the
block could not go uphill. In that case, i.e., in the case that

feosa > sina

or f > tan o, the assumption of downward sliding does not allow us to
satisfy Newton’s equations, and therefore is untenable. We must
make another assumption and try to assume no motion at all. Then
£ = 0 is known, while previously it was unknown. But the friction
force F is now unknown while previously it was known to be fN. Then
we write two equations, which are equations of statics,

Wsna—F=mi=0
—Weosa+N=myj=0

and find that F = N tan a. For the assumed case that f > tan q, this
becomes F < fN, which is required for no slipping. On the other
hand, if we should try to apply the non-slip analysis to the case of
little friction f < tan a, this would give F > fN, which is physically
impossible.

This analysis istypical of all dynamical
problems involving friction. At the start
we do not know whether the system slips
or not, or when it does move, we often do
not know which way it tends to move.
We start by assuming one of these possi-
bilities and carry out the analysis; at the
end we check whether the answer agrees Fie. 165. The rough inclined
with the assumption. If it does not Pi®0e
agree, we start again with another assumption, and if the problem
is physically possible at all, we will find a satisfactory answer to it.

d. The Simple Vibrating System. Figure 156 shows a weight W
hanging on a spring of stiffness k Ib/in. By this we mean that it takes
k 1b of force to make the spring 1 in. longer or shorter, and that the
extension z is proportional to the force F, or that

F =kx

We want to know what motions the weight is capable of in an up-and-
down direction. First we choose an origin of coordinates, taking
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point O at the location where the particle is when in static equilibrium.
If the weight has some size, as it always has, we replace it by a particle
at the center of gravity of the weight (page 213). In

Z the position of static equilibrium there are two forces
acting on the particle, its weight W downward and a

£ spring tension W upward, the spring therefore is some-

what elongated already. Count the displacement z

o w» downward from this origin. Now consider the par-
ticle in position 2. On it act two forces: the weight

x W downward and a spring force upward that is now
Fio. 166. Amass W -+ kz. Therefore there is a resultant upward force
on a spring is g gcting on it, or a force —kz in the positivez or down-

the simplest vi- A . N
brating system.  ward direction. Newton’s law then can be written

£ = —kx

=3

md

or

- % x (9a)

e
i

This is the differential equation of the simple vibrating system. It
cannot be integrated directly because = appears in the right-hand
member instead of the time £. Readers familiar with linear differential
equations can write the solution immediately; for those who are not,
it can be said that the first person who solved the equation probably
did it by pronouncing it in words thus: “In Eq. (9a) the displacement
z is such a function of the time, that, when it is differentiated twice, the
same function x appears again, multiplied by a negative constant.”
We may remember that sines and cosines behave just like that, and
after some trials find that

() e el

satisfies Eq. (9a), and therefore both are solutions. Further it is
noticed that Eq. (9a) contains two differentiations, that its solution
therefore is tantamount to two integrations, and that the general
solution ought to contain two integration constants, C; and C;. After
some more trials we find that

z = C; cos (\/?n t) + C; sin (\/—g t)
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is a solution of Eq. (9a) for any value of Cy and (s, which can be verified
by substitution. The constants C; and C. are to be determined by
the initial conditions of the problem. Suppose for example that we
specify that at time ¢ = 0 the weight is at position x, and has a speed

. —
x| £| w/E
\
\
(@) N W)

Fra. 167. Motions of the weight of Fig. 156, (a) when starting from rest from a posi-
tion zo below the equilibrium position, and (b) when starting from the equilibrium posi-
tion with an initial downward speed vo.

% = vo. Substituting these into the solution gives

2o = Ci1c080 + Casin 0 = C,
—-Cl,\/gsino—i—(!z\/%coso = CzJ%

or, solved for C; and C,,

Cl = Zo, Cz = ,J%vo

Substitute this into the solution.

Z = Zo COS (\/;En t) + v ,\/% sin (\/% t) (9b)

This equation can be considered as the general solution of Eq. (9a),
in which the tnitial displacement x, and the initial velocity vo can be
looked upon as arbitrary constants.

Figure 157a shows the solution for the case of an initial displace-
ment only, v, being zero, which means that in Fig. 156 the weight is
pulled down a distance z, and then released from rest. Figure 157
shows the solution for the case of an initial speed only, the displace-
ment being zero.

The most important point of Eq. (9b) is the time that elapses during
a full up-and-down vibration of the weight. The equation shows
that this occurs while the angle (v/%/mt) of the sine or cosine increases

Vo
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by 360 deg or 2r radians. Thus

\/—E—t=21r or t=21r\/—;1'
m k

is the duration of a full vibration, known as the ““period” of the vibra-
tion, designated by T, and measured in seconds per cycle. The

inverse of T
1 1 k
7= f=== \/—."_; (9c)

is known as the “frequency’’ and is measured in cycles per second.
As a numerical example, let a weight of 1 Ib hang on a spring whose
stiffness is 10 Ib/in. Then m = W/g = 1436 and

=1 410 X 386 = 62 _ 9.9 cycles/sec
2r 2r

Note that ¢ = 386, and not 32.2, because k was taken as pounds per
inch and not as pounds per foot.
Problems 183 to 192.

36. Curvilinear Motion of a Particle. This article contains four
more applications of Newton’s laws to simple particles:

a. The simple pendulum

b. The spherical pendulum

¢. The path of a projectile

d. A particle rolling off a sphere

a. The Simple Pendulum. A simple pendulum is
a particle of mass m suspended from a weightless string
of length I, which is supposed to move in a vertical
ng plane. Let the position of the mass be determined by
Fie. 168. The the angle ¢, measured in radians, as in Fig. 158. Two
f",gple pendu-  fo0es act on the particle, its weight mg and the un-
known string tension 7. The path of the particle is a
circle with O as center, and this problem seems suited for treatment
with tangential and normal components rather than with rectangular
ones. The force mg has components mg cos ¢ radially or normal to
the path, and mg sin ¢ tangentially. Remembering Eqs. (6) (page
165), we write the Newton equations

radially: T — mg cos ¢ = me¥l
tangentially: —mg sin ¢ = mly
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In the tangential equation the force is written with a — sign, because
the acceleration on the right-hand side is positive for tncreasing angle
¢, which in Fig. 158 is seen to be associated with a motion of the particle
to the left, whereas the force component is to the right. Of these two
equations the radial one enables us to calculate the string tension T'
after we know the motion, while the tangential equation determines
the motion ¢ without containing the unknown 7. In the latter
equation we see that the mass m can be canceled: the motion of the
pendulum is independent of its mass, and

¢ = —%sixup

This differential equation cannot be solved by elementary means (the
solution involves elliptic functions, which are known only in the form
of infinite series). However, if we limit ourselves to investigating
motions with small angles ¢, the sin ¢ can be developed into a power

series
3

Sin¢=¢—%—+ e R
and if all terms except the first one are neglected, the error involved is
small for small angles. For example, if ¢ = 5.7 deg or 0.1 radian,
the first term is 0.1 and the next one 1/6,000, so that the erroris 1 part
in 600, which is acceptable. Then the differential equation reduces to

<P=—Z‘P

which is of the same form as Eq. (9a) (page 182), and consequently has
the same solution. In particular, the frequency of the pendulum is

[Eq. (9¢), page 184] i
f=g \/ig (9d)

and, if the pendulum is started (¢ = 0) from the position ¢,, the solu-

tion is |Eq. (9b)]
@ = @o COS (\/;g t)

The angular velocity is, by differentiation,

Ny
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This completes the solution for the motion. From the radial equation
of Newton we can now solve for the string tension.

T = mg cos ¢ + me?l

At the ends of the stroke where ¢ = + ¢oand ¢ = 0, this string tension
is smaller than at any other position:

o
Tun = mg cos ¢ =~ mg ——29

whereas in the center, for ¢ = 0, it is as large as it ever becomes:

Towe = mg + mlghe = mg + mig}§

Tow = mg(1 + ¢f)

Thus the string tension varies from a maximum value in the mid-
position to a minimum at the extremes.

b. The Spherical Pendulum. The spherical
pendulum is the same device as the simple pen-
dulum, except that instead of moving in a vertical
plane, the particle moves at constant speed along
a circular path in a horizontal plane, as indicated
in Fig. 159. We want to know under what cir-
cumstances such a motion is possible and what
the frequency is. In this case the most conven-

. ient coordinates are the vertical one, 2, and the
Fia. 159. The sim- . . .
ple spherical pendu- Dormal and tangential ones in the horizontal plane
lum. of motion. The displacement z is constant in
time, hence 2 is zero, and the corresponding Newton equation is

mg —TcoBa=mé=20

or
T =4
cos a

= constant

Then the resultant of the forces 7' and mg is a force 7 sin @ = mg tan «
in the horizontal plane, directed radially inward. In particular, the
tangential component of force is zero and hence the tangential accelera-
tion r¢ is zero, or ¢ is constant, as assumed.

The radial Newton equation is

mg tan a = me%r



CURVILINEAR MOTION OF A PARTICLE 187

As in the simple pendulum, the mass cancels out, or the motion s
independent of the mass of the particle. Solving for the angular

speed, we obtain
. \/g tan a _ \/ g
¢ = r  Nlcosa

The angle ¢ equals ¢t, and one full revolution occurs when ¢ increases
by 360 deg or 2x radians, or

and
f__l_L g
T T 2¢V\lcosa

The frequency depends on the apex angle of the cone described by the
pendulum. For a small angle o the frequency is the same as that of
the ‘“‘simple’’ pendulum (page 185), while for « approaching 90 deg
the frequency becomes very large.

¢. The Path of a Projectile. Consider a bullet of mass m in its
flight and assume the air friction to be negligible, so that the only force
acting on the bullet is its weight. If we choose a coordinate system
with = measured horizontally to the right and y vertically upward, the
Newton equations are

horizontally: mi =0
vertically: myj = —W = —mg

With these equations the accelerations of the particle are known and
are independent of the mass or size of the particle. The rest of the
problem is one of kinematics and was discussed on page 167.

A question that may be asked is which region in space is safe from being
hit, if the gun can be pointed at any angle of elevation and is limited only by a
definite muzzle velocity v,. Referring to the results of page 167 and calling
the angle of elevation of the gun a, we have (Fig. 160).

Yo: = ¥ COS @, Yo, = Vo Sin &

The equations of the path of flight, with this notation, are

gt? .
T =vocosat, y=——2-+vos1nat
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Suppose we pick at random a point zo, yo (Fig. 160) and ask whether that point
can be hit or not by firing the gun at a suitable elevation . Obviously when
we choose % and y, too large, the gun cannot reach it. Let the point zo, o be
hit after £, sec. Then, in the equations

2
zn=vocosato, yo=—g'$+vosinato

there are two unknown quantities, {, and ¢, while zo and y, are known. We
are not interested in ¢ but do want to know «. Eliminate t,.

- g(__fg_)’ ; (_ro_)
Vo= ~9\srcosal Tresina o €OS Q.
From this equation we must attempt to solve for @. If we find an answer it

Y

e aven
A 3
b
-3

F1a. 160. A given point in space can be hit with two different angles of elevation of a
gun with prescribed musele velocity, provided the point does not lie outside the parabola
of safety.

means that 4,y can be hit by shooting with the & so found; if the answer for «
comes out imaginary, the point zo,y, cannot be hit.

2
%o

Yocos*a = — —5 + zo8in o cos
200
1 4 cos 2« gz w0 |
Yo T Tgptpsinla
2
zosin2a—yoc052a=yo+%x2—°
0

In Fig. 160 we see the auxiliary angle ¢, the angle of sight of the target, and

sing = —2° __, cosp = —20
Vi + o Vil + 4

Substitute this into the above.

Yo + gzeo/v

Vg + yi

co8 ¢ 8in 2a — sin ¢ cos 2a =
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The left-hand side equals sin (2a — ¢), and the right-hand side of this expres-
sion is known; so that we can look up 2a — ¢ in a table of sines, and since ¢ is
known, we find . But, in general, sin 8 = sin (180° — 8); so that if we find a
numerical answer for 2a — ¢, the value 180 — (20 — ¢) will do as well. Thus
we find two answers for the elevation a; two possible parabolic paths can hit a
given point, as shown in Fig. 160. When do we fail to find an answer for a?
Obviously this is the case when the right-hand side of the above equation
becomes larger than 1, because the sine of any angle is always less than 1.
Therefore, we are on the border line of safety if

vo + (gEd/0) _

Vi + v
or, worked out, if
2% v
2 4 0, 0
zy + 7 Yo = o

If 2, and yo satisfy this relation, the point P can just be hit. Now consider z,
and y, to be variables; then the above equation represents a curve, which is
recognized to be a parabola again: the
parabola of safety, sketched in Fig. 160.

d. Particle Rolling Off a Sphere.
Let a particle rest on top of a sphere
of radius r, and be permitted to slide
down without friction (Fig. 161). At
what angle ¢ will the particle leave
the sphere? Consider the general
position ¢, and note that there are
two forces acting on the particle, the f’gf,ﬂfrt W;Il'lh‘;eﬁt;ﬁ::; Blipdll;:fe d::':;
weight mg and the normal pressure N cortain point ¢.
of the sphere. Set up Newton’s equa-
tions in the tangential and normal directions with the help of Eqs. (6)

‘(page 165).

radially: mg cos ¢ — N = m(¢%)
tangentially: mg sin ¢ = m(¢gr)

The second equation will enable us to solve for the motion ¢, and then
the first one can be solved for N. It is obvious that for small values of
¢ the normal pressure N is positive; for large ¢, certainly for ¢ = 90°,
N should come out negative, which means that the sphere must pull
on the particle. Somewhere in between, N becomes zero, and if the
sphere cannot pull on the particle, there the particle will leave it.
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Therefore, we set N = 0 in the first equation, finding

g cos ¢ = @
gsin ¢ = ¢r

for the point where the particle leaves the sphere. Integrate the
second equation by the standard procedure when the independent
variable (f in this case) is absent. That procedure is

50 _do_ _dede _di. _ édé

and the second equation becormes

g sin ¢d¢ ro de¢

Integrated:
(4 _ (P2 &
g cos ¢ =3
ro8
o1 — cos ¢) = -

But, by the first or radial Newton equation this is also equal to
g cos ¢/2 or

g(1 — cos ¢) = 14g cos ¢
cos ¢ = 24

which means that when the particle has vertically descended by one-

third radius, it will leave the sphere. Since this result is independent

of g, it is even true for a particle and sphere. placed on the moon.
Problems 193 to 202.

36. Systems of Two Particles. We will now discuss four examples
in which two particles tied together by massless connectmg members
form a system. They are

a. Atwood’s machine ,
b. An incline and pulley combination

¢. A chain slipping off a table

d. A flyball engine governor

a. Atwood’s Machine. Atwood’s machine, illustrated in Fig. 162,
consists of two nearly equal weights W and W 4 w, connected together
by a string and slung over a pulley, which for this analysis will be
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assumed to have no mass and no friction. What motion will take
place? Let the unknown tensile force in the string be I'. This force
is constant all along the length of the string, because neither the string
nor the pulley have mass. If T were not con-
stant, we could isolate a piece of string with a
resultant force different from zero, which for zero
mass would lead to an infinite acceleration by
Newton’s second law. This is absurd and we
conclude in general that the forces on a massless
body have a zero resultant even if the body is being
accelerated. (See also Fig. 211 on page 234.)
Returning to Atwood’s machine, we choose an  Fic. 162, The ap-
origin and a coordinate x as indicated in the fig- X‘;ﬁ:ﬁgﬁ (;’;4691"8%'%‘3
ure. We isolate the weight W + w by cutting a tutor in Trinity Col-
the string and write }zﬁz’cgﬁb’fg"ggﬁ:
sidered particularly
W+ w . happy in the clear-
X ness of his explana-

tions,” according to
the ‘Encyclopaedia

For the other weight we have a similar equation, Britannica.”
and remembering that if one weight goes down the other must go
up by the same amount, we write

W4+w-T=

T—w=W;
7

This pair of equations has two unknowns, T' and £ Eliminating T
by adding the two and solving for # leads to

LW

2= o Fw?

The system has a constant acceleration very much smaller than g¢.
The apparatus was designed by Atwood
(1746-1807) for the purpose of demon-
strating a slowed-down free-falling motion.
Its intent therefore was the same as that
of Galileo’s rolling cylinders (page 180).
F1a. 163. A smooth incline and b. Incline and Pulley. Next, consider
pulley combination. the system of Fig. 163, again assuming a
massless string and pulley and no friction anywhere. From the geom-
etry we reason that if W, goes down a distance z along the incline, the
weight W, goes up /2. Let the string force again be T, constant all
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along its length. Then we write

Wﬁma—T=%%
2T—W2=W7’;,

the unknowns being T and & We can eliminate 7 by adding twice
the first equation to the second one and find

4W, sin a — 2W,
W+ W,

E=y9

In case W, is large, this expression is negative, which means that
the system accelerates in a direction opposite to that first assumed.
The particular case £ = 0 expresses the relation between W, and W,
for static equilibrium.

c. The Chain Sliding Off the Table. Figure 164 shows a flexible
chain of total length [ and total weight wil, lying partly on a table
without friction. How fast does it slide down? To solve this we
consider the chain as consisting of two particles: the piece  hanging
down and the piece ! — z lying on the table, directly connected to

r—-—l—x -

each other at the corner. This time we are farther away than ever

from our exact definition of particle (page 174), and the reader should

protest. But on page 213 it will be shown

——=————xy- that we are indeed justified in considering

U ; these two pieces of chain as particles, because

! every point of each body moves in exactly the

X .

Fio. 164. The flexible, Same way and all forces acting on the body

frictionless chain slipping pass through the center of gravity. Let the

off the table. tensile force in the chain at the corner be 7,

and this force is guided around the corner by a short piece of elbow

tubing attached to the table through which the chain passes. (Explain

that the force between the elbow and the table is T'4/2.) Write
Newton’s equations

= w(l — x) i

g

wizr
wirx — T =23

g
Eliminate T by adding and solve for #,

" z
x=gT
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This is a differential equation, almost like Eq. (9a); only the factor
before x is here positive, while it was negative in the previous case.
The solution is found by the same process as used there, which leads
to

z = Cle\[lé‘ 4 Cge'vg‘

Suppose that at time { = 0 we have z = a and % = 0, which means
that we start from rest with an overhang of length a. Substituting

j SENQN

z /] £
\‘ 4 a \,
\ w
\\ T L w
N X ¥4
@ 2F y
\\\ l W
T aE_,
0 ' 4 (P
1 1

Fig. 165. Shows the relation of the slipped- Fig. 166, The position @ of the
off length z of the chain of Fig. 164 and the flyball governor depends on the
time, when starting from rest with z = a. speed w,

these conditions into the general solution and solving for the integra-
tion constants Cy and C; gives the result

oV + o~ Ve
@ 2

-

with the hyperbolical cosine, which function was encountered pre-
viously in connection with the catenary on page 66. The relation is
plotted (from a table in Peirce’s ““Short Table of Integrals”) in Fig.
165, and it is noted that both ordinate and abscissa are pure numbers.
This one plot, therefore, gives the time of fall of a chain of any length
I, starting from any overhang a, of any unit weight w.

d. The Flyball Governor. The flyball engine governor is illustrated
in Fig. 166. It consists of two equal particles of weight w and a
third, heavier, particle of weight W, linked together by weightless
hinged bars of length ! as shown. The weight W can slide freely up

or

x

I



194 DYNAMICS OF A PARTICLE

and down the central rod and the entire figure rotates at uniform
angular speed w. We want the relation between the angle o and the
angular speed w in terms of the various weights and lengths. Let
the tensile force in the two upper bars be T'; and the tensile force in
the two lower bars be T.. In the state of steady rotation the accelera-
tion of W is zero; the acceleration of each of the w’s is directed radially
inward and is equal to w%(a + Isin @). The forces acting on the
various particles are the bar forces Ty and T, and the weight. The
reader is reminded that he never even heard the word “centrifugal
force” (page 211), and he is advised to reread the definition of force
on page 3. Now we set up Newton’s equations

wl: W —2T;cos 2 =0
wl: Ticosa— Trcosa—w=0
w— T,sina+T2sina=%0w2(a+lsina).

In these three equations the unknowns are Ty, T and a. Eliminate
T, and T, and derive a single equation, containing only a.

l

w ¢,  tana
WH+wg” “Snatall

This equation is written in a dimensionless form; both sides are pure

numbers. In case the numerical values for the weights, lengths, and

speed w are given, the above equation is not fit to calculate a directly.

That, therefore, has to be done by trial and error. Note that for zero

w, the angle & is zero, and for large w the angle « goes to 90 deg.
Problems 203 to 211.




CHAPTER XI
KINEMATICS OF PLANE MOTION

87. Velocities. In this chapter we will study the relations between
the time and the displacements of the various points of a rigid body
moving in a plane. If the body itself is plane, the paths of all of its
points lie in the plane of motion; in general however the body is three-
dimensional, and then the paths of the various points lie in parallel
planes, and the velocities of two points of the body, located in a line
perpendicular to the plane of motion, are equal and parallel. The
various points of the body lying in one of the planes of motion, how-
ever, all have different velocities in
general, so that the problem is one
of considerable complication. N

Consider a rigid body in a plane A \
(Fig. 167) and draw on it a line 1-2.
After a certain time, the body has
displaced itself to the new position
1’-2’. The displacements 1-1’ and 2-2’ c/
must be so related that the distance Fie. 167. Two different positions
1-2 equals 1’-2’, because the body has  *f*® rigid body in & plane.
been presumed rigid. If we are entirely free to move the body where
we like in the plane, we can choose point 1’ at will, but after having
chosen 1/, our choice for the new position 2’ is limited to the circle C
shown in the figure.

Our next step is to redraw Fig. 167 for the case that the two con-

» 27 secutive positions of the body are close together
2+ and the time interval At very small (Fig. 168).

) o In Fig. 167 the curved outlines of the body are
17 shown, but they are not essential because the
Fig. 168. The longitu- position of the body is completely determined
budinal ot ne DY the position of the two points 1 and 2;
of two points of a rigid hence in Fig. 168 we draw only the lines 1-2
body are equal. and 1’-2/, omitting the curved outlines. The
small displacement 1-1’ is considered to consist of two components
1-1”, the longitudinal displacement, and 1”-1’, the transverse dis-

195
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placement. In the figure the length 1-2 is exactly equal to 1’-2’, and
the longitudinal displacements 1-1” and 2-2 are approximately equal;
they would be exactly equal if the bar 1’-2’ were parallel to 1-2.

Call
1-2 =1-2' =, 1-1” = Ag,, 17-1" = As,,
2-2" = Agy,, 22! = As,,

Calculate As;, in terms of the other quantities, neglecting powers of the A’s
higher than the second, and find:

(ASc, — A8l1)2

A&, = ASz, - 3]

It can be said that if in Fig. 168 the displacements are small of
the first order, then the difference between 1-1” and 2-2” is small of

D’Zv“:ﬂ:ﬂ+=='=‘=='==w4‘:/

(a) (6) tc)

Fia. 169. The velocity pattern of a rigid body (¢) can be considered as the sum of a
rotation (a) and a translation (b).

the second order. Dividing all these displacements by the time inter-
val At, going to the limit A¢ = 0, and hence neglecting second-order
quantities, we reach the conclusion that

The longitudinal components of the velocities of two arbitrary
points of a body in plane motion are equal.

The transverse velocity components of the two points 1 and 2
can be arbitrarily chosen, but as soon as that is done, the transverse
velocities of all other points of the line 1-2 follow, as is shown in Fig.
169a. The total motion of any point on the line 1-2 (and of any point
of the entire body of which that line forms a part) is then looked upon
(Fig. 169c) as the sum of a rotation about a point C (169a) and a
longitudinal translation (169b). In Fig. 170 we see how the velocity
of an arbitrary point D, not on the connecting line 1-2 can be found by
compounding the translational speed v; (equal and parallel to that of
points 1 or 2) with the rotational speed wr (perpendicular to the radius
CD). When this is understood, we can ask whether there is a point D
somewhere in the body, for which the velocity is zero. If such a point
exists, obviously the rotational velocity component wr must cancel
the translational velocity component v;, We draw a line CE per-
pendicular to the line 1-2. The rotational velocity of any point on
this line is directed to the left, opposite to v;, and by adjusting the
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distance CE, we can make the value of the rotational velocity any-
thing we please. We then choose point P, so that the two velocity
components cancel. This construction is possible in one way only,
and thus we recognize that there is one point P, in the body for which
the velocity is zero. Then the total motion of the rigid body cannot
be anything else but a rotation of that body about the point P,, and
we see in Fig. 170 that the total velocities of the points 1, 2, and D
are directed perpendicular to the respective radii P,1, P2, and P,D.

1)

/3
- / v
F1e. 170. Construction of the velocity Fia. 171, Construction of the velocity
of an arbitrary point D from the longitu- pole P, from the speeds at two points 1
dinal speed of line 1,2 and the rotational and 2.
speed about C.

The point P, is called the velocity pole or the instantaneous center of
rotation. The last-mentioned property of the velocity pole can be
used as a means of finding that point when the velocities v; and v,
of two points are given. This is shown in Figure 171, where we draw
lines through points 1 and 2 directed perpendicular to their respective
velocities. The intersection of these two lines is the pole P,.

The velocity pole is not necessarily located in the body we are
studying; in Fig. 171 it falls just outside that body. The point P,
is called “‘¢nstanfaneous center of rotation,” because in general it
remainsg fixed in the body only for very small displacements, or for a
small time increment Af. After this displacement has occurred, the
body finds itself in a different geometrical position and the pole may
or may not be in the same position. In general it is not, as will be
seen in the following examples.

We have seen two methods for finding the velocity pole, (¢) by the cancel-
ing of a longitudinal and rotational speed as in Fig. 170 and (b) by the inter-
section of two normal lines as in Fig. 171. It will now be proved that these
two methods lead to identical results. In Fig. 172, let A, and A; be the two
points, whose velocities A4,V, and A,V, are given. The pole P, has been
constructed by intersecting A.P., which is 1 A,V,, with 4,P,, which is L
A.V. DropP.,N L A;A,. From this we want to prove (a) that A,\L, = A.L,
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and (b) that point N is the point C of Fig. 170, where the transverse velocity of
414, is zero, and finally (c) that the rotational velocity at P, cancels the
translational speed there. The proof is as follows:

LT]A]V], = 90° - £V|A1L1 = lLlAva (ma.rked ')
Therefore
AAT,V, = AAPN (equal angles)
Therefore
AIVI AlLl AlTl

From the other side of the figure we have the same argument, with the same

L%
AI. 74 N A) L:
SOl =N\
I -

~ _ |
AN e i
-~ i

£ |
-

Fia. 172. Proof of a property of the velocity pole P..

result, except that the subscripts 1 are replaced by subscripts 2:
A:Vy ALy AT,

Now, if P, is the pole, the velocities 4,V, and 4.V, must be proportional to
their distances from the pole 4P, and A;P,. Hence all six ratios above are
equal to each other. Equating the two middle ones, we have A,L, = A,L,,
which proves (z). Equating the last two shows that N lies on the line con-
necting points T'; and T, and hence is the center of transverse motion, point €
of Fig. 170, which proves (b). The rotational velocity of P.,, about N as cen-
ter, is NP,/N A, times the transverse velocity 4.7, or by the above equalities
that is A,L;, which proves (c).

The foregoing theory will now be applied to four examples: the
crank mechanism, the rolling wheel, a three-bar linkage, and Watt’s
parallelogram.

a. The Crank Mechanism. The crank mechanism is shown in an
arbitrary angular position in Fig. 173, with the crankpin speed wr
known. The first plane body we consider is the erank OC. Tts motion
is simple, and obviously O is the velocity pole, which, moreover,
remains at O for all positions of the crank,
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The second plane body we consider is the connecting rod. The
velocity of its end C is known to be wr. The velocity of its other end
P is only partially known: we know it must be directed along PO, but
we do not know the value as yet. There are two graphical means
of determining it. First, we resolve wr at C into its longitudinal
and transverse components; we then slide the longitudinal speed v;
unchanged along the rod to P and then add enough transverse speed
to it there to make the result come out along OP.

Paf\\
I \S
N
NN
\
\ ~

!
|
|
|
} \ N Uy wr
|
I
[
|
|

Fi16. 173. Velocities of the connecting rod of a crank mechanism.

The other method is by means of the velocity P,, which we can
construct immediately, by erecting normals to the speeds at the points
C and P. The velocity v» then is equal to wr multiplied by the ratio
P,P/P,C.

The velocity of an arbitrary point Q of the rod again can be found
in two ways, both indicated in Fig. 173. The easiest one is to draw
P,Q, and to lay off ve perpendicular to it, giving it a value correspond-
ing to the distance P,Q.

The instantaneous motion of the rod can be visualized by covering
the drawing with a sheet of transparent paper, tracing PC on that top
sheet, inserting a thumbtack through both sheets at point P, and then
rotating the top sheet over the bottom one through a smail angle. It
is obvious that for larger angles of rotation about the thumbtack at
P,, the motion is no longer correct. After a small displacement of the
transparent sheet we have to construct a new velocity pole and trans-
fer the thumbtack. When we do this for a large number of positions,
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for 360-deg rotation of the crank, we find many pinpricks in both sheets
of paper, forming a curve on each. The locus of P, on the lower sheet
is shown in Fig. 174, and the various points on it should be checked by
the reader. The curve is known as the pole curve of the steady plane;
the first man who constructed it, Poinsot (1777-1859), knew classic
Greek and called the curve the polhodie (from the Greek hodos, path).
The pin pricks in the upper transparent sheet form a curve, which
the reader should attempt to sketch for himself; it has four branches to

207,

Fi1a. 174. The pole curve or locus of the velocity pole for the crank mechanism.

infinity. This curve is the pole curve on the moving plane and was
called by Poinsot the herpolhodie. At any instant one point of one
pole curve coincides with a point of the other pole curve at the thumb-
tack. Any plane motion can be regarded as a rolling of one pole curve
on the other one.

Comparing the graphical method with the analytical one of page
170, leading to the complete result, Fig. 149, we see that the analytical
approach is much more direct and suitable in this case. In general,
it can be said that when an analytical treatment is possible, it is
preferable over the graphical method. But in many cases of greater
complication, the graphical method just described is the only feasible
one.
b. The Rolling Wheel. The next example to be discussed is the
rolling wheel (Fig. 175). Let the center C of the wheel move hori-
zontally to the right with velocity »; imagine the wheel motion to con-
sist of two components, a sliding parallel to itself to the right with
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speed #, and a clockwise rotation about C. The latter has to be such
that the peripheral speed of the wheel is also », because at the point of
road contact there is no horizontal slip of the wheel, so that its velocity
there must be zero. This contact point then is the velocity pole P,.
The speed at any other point D,
for instance, can be found in
either one of two ways: first, by
laying it off perpendicular to the
radius P,D of the pole, or sec-
ond, by adding the sliding speed
v to the peripheral speed v, as
indicated. We can again cover
the drawing with a transparent
sheet, trace the wheel outline F1a. 175. Velocities of the various points
on it, push a thumbtack through of & rolling wheel.

both sheets at P,, and turn the upper sheet through a small angle.
The pole curve on the bottom sheet, or the succession of pinpricks,
is the horizontal road line; the pole curve on the upper transparent
sheet is the wheel circle. Thus the rolling of one pole curve on the
other one is immediately visible here.
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F1a, 176. Construction of velocities in a three-bar linkage.

¢. Three-bar Linkage. The third example is the three-bar linkage
of Fig. 176, consisting of three bars and four hinges 4,B,C,D. The
bar AB rotates at constant angular velocity w about A; we want to
know the velocity of all points; in particular, that of hinge C. There
are three bodies in the system. The bars AB and CD have very
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simple motions: they rotate about their fixed hinges, which are their
velocity poles. The bar BC however has a more complicated motion.
We know the velocity of point B = wa, and of the velocity of point C
we know only the direction, which must be perpendicular to CD,
because C rotates about D. As in the previous examples, there are
two ways in which the problem can be handled. First resolve vz = wa
into its longitudinal v; and transverse components, and slide the
longitudinal speed along the bar to C. The total speed at C consists
of v; plus an unknown amount of transverse speed. Adding this
transverse component to the end point of the »; arrow, in the manner of
Fig. 5 (page 10), places the end point of the v, vector somewhere on
the dotted line I, which is thus the first locus of »,. But v, must be
perpendicular to CD, so that the dotted line II is the second locus of
v.. The two loci intersect at S, so that C§ is the desired velocity
vector of point C.

The second method is to construct the velocity pole of bar BC,
which is point P,, and then construct C'S perpendicular to P.C and of
magnitude
P,C
P,B

wa

This, by the proof of Fig. 172, ought to give the same answer.

Before leaving this example we note that three-bar linkages
occur very frequently under many guises. For example the crank of
Fig. 173 can be considered one, in which two of the three bars (OC and
CP) are immediately visible, and the third bar is imaginary; it starts
at P, is directed perpendicular to OP, and is infinitely long. In Fig.
176 the paths of B and C are circles about the centers A and D. In
Fig. 173 the path of P is a straight line, or a “circle of infinite radius.”

d. The Parallelogram of Watt. The last example of this article is
the parallelogram of Watt, illustrated in Fig. 177. It is a link mecha-
nism, invented by James Watt (1736-1819) for the purpose of coupling
the rectilinear motion of a piston rod to the circular arc path 4 of a
point of the “walking beam” OA of his engine. The principle is
shown in Fig. 177a, where OC, CD, and DF are the bars of a three-bar
linkage, with fixed hinges at O and F. Point C can move on a circu-
lar are about O; point D can move in a similar arc about F. The mid-
point E of bar CD describes a complicated curve, which is approxi-
mately a straight vertical line even for reasonably large motions of ¢
and D, as a graphical construction shows. The linkage is shown in
a deflected position OC’E’D’F, and for that position P, is the velocity
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pole of bar CD. It is seen that the P,E’ is almost parallel to OC or
DF, so that the velocity of E’ is almost perpendicular to OC, inde-
pendent of the deviation. If, in Fig. 177a, OC is made the right half
of the “walking beam,” the top of the piston rod could be attached to
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Fie. 177. In Watt's steam engine the midpoint E of the three-bar linkage OCDF
describes approximately a straight line; by the four-bar parallelogram CDBA, the
motion of E is doubled at B.

point E. This construction has the practical disadvantage that the
anchor F comes to lie far from the engine. Therefore (Fig. 177b)
Watt placed the link CED in the middle of the right half of his walk-
ing beam instead of at the end of it, and used point E to drive, not
the main piston, but the auxiliary water pump. He then added the
links AB and DB, forming a parallelogram ABCD, and chose the
dimensions such that OC = AC and that CE = DE. Then, from
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geometry, the points O,E, and B are always in a straight line and
OB = 20E. The point B then describes a path similar to that of £
(and twice as large), which therefore also approximates the desired
straight line.

Problems 212 to 220.

38. Accelerations. In many previous examples (such as Figs.
136, 139, 147, 149) we have seen that a point of zero velocity may have
an acceleration, or a point of zero acceleration may have a velocity.
We should not expect, therefore, that a velocity analysis of a plane
motion, leading to the discovery of the velocity pole, will give us much
information regarding the accelerations of the various points. In
almost every case the velocity pole itself has an acceleration, although
by definition it is a point of zero velocity, In this article we shall
learn how to find the point of zero acceleration in a plane motion, and,
in general, this acceleration pole will be a point different from the
velocity pole. Only in the case of a real physical hinge point, which is

anchored down and does not move at all,

do the two poles coincide with the hinge.
Before proceeding to the general case we
shall examine two important special cases:
the uniform parallel acceleration and the
motion about a fixed, permanent center of
rotation. Figure 178 shows the first case;
Fie. 178, A gl ;; o body in every p01.nt of the body has exactly the same
uniform parallel acceleration acceleration #. As a consequence of this,
?&?ﬂ ;‘;’::‘lﬂl‘:‘lle::&“xl:h uni~- g]] points then must also have the same
) velocity v, because if they had not and two
points should have different velocities, we could construct a velocity
pole or instantaneous center of rotation. In a rotating body with some
speed, the various points have centripetally directed accelerations,
which are not parallel. Therefore, if the accelerations of all points are
parallel and alike, so must be the velocities. However, the velocities
are not necessarily in the same direction as the accelerations. For
example, imagine a bullet or shell of some size flying through the top
point of a parabolic trajectory (Fig. 145, page 167) without rotation.
The velocities are horizontal and the same for all points of the shell;
the accelerations are vertical, and again the same for all points, equal

tog.

The other important special case, that of rotation about a fixed

center, is illustrated in Figs. 179a, b, and ¢. In the first of these the

<
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body rotates about C at uniform angular speed @ (w = constant;
@ = 0), and we know by page 165 that the accelerations w? are
directed radially inward and are proportional to the distance r. In
the second picture (179b) the angular velocity is zero (w = 0; & = 0),
and the body is accelerated angularly from rest. The accelerations
are or, directed tangentially and again proportional to the distance .
Finally in Fig. 179¢ we see the mixed case; both w and & exist. The
acceleration at each point has two components; the angle between the
acceleration vector and the radius is the same for all points; and
the acceleration is proportional to the radius 7.

(a) %) (c)
Fia. 179. Accelerations of a body rotating about a fixed center C,

Returning to Fig. 178 we might say that the parallel motion of
Fig. 178 is a special case of the more general motion of Fig. 179¢, in
which the center of rotation C is very far away (at infinity). To
understand this, consider in Fig. 179¢ a small square area of 0.01-in.
side located 2 in. from C. In the various points of the small square,
the radii from C are almost parallel, and the accelerations and veloci-
ties are almost parallel and equal. Magnify the picture of the small
square and let the center C go farther and farther away; we then
approach Fig. 178 more and more.

In now turning to the general case, we consider two pomts 1 and
2 of the body (Fig. 180), and ask whether there is any relation between
the accelerations #; and 9, of those two points. We remember that
for velocities (Fig. 170 and page 196) the longitudinal components
had to be equal. For accelerations this is not so, as can be seen from
Fig. 179¢ by connecting the center C' with any other point.

In order to find the relation, we reduce Fig. 180 to the state of
Fig. 179¢ by superposing or adding to all points of the figure a speed
—v; and an acceleration —#,, which puts point 1 torest. The accelera-
tion of point 2 then is the vector sum of 9, and —%, (by the theorem of
page 165), and this acceleration, called the acceleration of point 2
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relative to point 1, cannot have a longitudinal component directed
away from point 1, by Fig. 179. Thus the vector #; — #, at point 2
cannot have a longitudinal component directed away from point 1,
or the vector 9, cannot have a radial component in the direction away

Fra. 180. If the acceleration #; of point 1 is given, then the acoeleration #: of point 2
cannot have its end point in the shaded region.

Fic. 181. Given the accelerations of two points 1 and 2 of a rigid body, to construect
the accleration of a third point 3, and to find the acceleration pole 4.
from point 1 that is greater than the similar component of #,. In
Fig. 180 this is shown by the shaded region: if #, is given, the end
point of the 9, vector, plotted from point 2 as a start, cannot lie in that
shaded region, but there is no other restriction on the 9; vector.

Now supposing that in Fig. 181 the accelerations ¢, and 9; of the
points 1 and 2 of a rigid body are given in accordance with the limita-
tion just found, how can we construct from it the acceleration of an
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arbitrary point 3 of the body? This is done by adding the acceleration
vector —#; to ¥; and to 9.. This makes the new %, equal to zero and
the new #; equal to 9s; = 9, — Dy, as shown. The acceleration ¥, is
pronounced ‘“acceleration of 2 relative to 1.” The pattern of the
21 vector, relative to the now-steady point 1, is as in Fig. 179¢. Tak-
ing an arbitrary point 3 then, we construct 93, by making angle 1303,
equal to angle 124, and by adjusting the length of #3; proportional to
the radius 1-3. To find the actual acceleration of point 3, we have to
undo the previous addition of —#,, i.e., we have to add #,, giving ¥,
as shown. Now let us try to find a point 4 in the plane where %,
becomes zero; in other words let us try to find the pole of acceleration.
Obviously then #4; must be equal and opposite to #,. Turn the radius
1-3 about point 1 to the position 14, so that angle 9,14 equals angle
129,;. Then the direction of 94, for any point on line 14 is opposite
to #1. Choose a point 4 on 14 so far from point 1 that the magnitude
of 941 is equal to that of #;. This point is the acceleration pole we are
seeking. As a check on our construction, we must find that angle
P.29, equals angle P,19, equals angle P,39;. The verification of this
last statement is left to the reader in Problem 225.

Before applying the theory to a few examples, we return to Fig.
180 for the purpose of deriving the magnitude of the in-line com-
ponent of acceleration from the velocities. In Fig. 179 we see that
the radial or in-line component is determined by the velocity itself
(without dot) whereas the tangential or across component has a
dotted velocity or an acceleration in its expression. In Fig. 180 let
vy and v; be the velocities of the two points, and superpose —»; on
the figure, setting point 1 at rest, and making the velocity of point 2
equal to v — v; = vy (pronounced “v of 2 relative to 1””). This vy
must be perpendicular to line 1-2 by the proposition of page 196,
and it is equal to vy — vy, where the transverse components are
measured in the same direction. (In the figure it appears as the sum,
but one of the velocity components is negative.) Letting the distance
1-2be I, the acceleration of 2 relative to 1 due to this is

oy = (vee — v10)?
l
by Eq. (6a) (page 165). The transverse component #s;, of the vector
921 cannot be found from the velocities directly, since it involves a
differentiation [Eq. (6b)] that cannot be carried out graphically.

Now the theory will be applied to some of the examples of the pre-

ceding article,
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a. The Crank Mechanism. For the crank mechanism with uni-
formly rotating crank (w = constant), the velocities were derived in
Fig. 173, and are reproduced in Fig. 182 as thin dotted lines. The
acceleration of the crankpin 9, = w% is drawn as a heavy line having
the length of a radius; all further accelerations will be drawn to the
same scale. To find the acceleration 9, of the piston, point 2, we

v,,iA Y4 NB

Fia. 182. Given the acceleration f; of the crankpin; to construct the acceleration of
the piston.

state that 9, = 9, 4 &2, while the latter can be resolved into two
components

D2 = 1 + Do + Do
By the result just found, 9o equals (v — v1)%/l, or(24)?/21. We
read graphically from the figure that 24 or vy — vy is 0.70v,, and

2
1 = 3r, so that v, = @) (0";0) = (.169;, which is laid off in Fig. 182

to scale. To this is added #;, which brings us to point B. Then we
have to add a vector perpendicular to 12 of unknown amount oz,
which places the end point of 9; on the dashed line I, the first locus for
9. A second locus is simply II, because the piston moves in a straight
line. Therefore the stretch 2C is the required piston acceleration,
drawn to the same scale as ¥, = w’r.

b. Three-bar Linkage. In the three-bar linkage of Fig. 176 the bar
AB has a constant angular speed w; what is the acceleration of point
C? The construction is shown in Fig. 183. We start by laying off
91 = w?a to a convenient scale. Then #, consists of three components,
as before. The component sy is (4B)2/12, which comes out, graphi-
cally, to be 0.299,. To this is added #,, which brings us to point C,
and now we have to add a transverse component of unknown amount,
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giving the locus I for the end point of 4,. But point 2 also moves on a
circle as a point of the third bar 2D, and hence its acceleration con-
sists of a radial component v3/2D and a transverse component of
unknown length. The radial component is found to be 0.49%, and is
laid off; with the unknown transverse component this gives the locus
II. The two loci intersect at E, and 2F is the acceleration of point 2;
it is seen to be 0.96 times as large as ;.

F1a. 183. 1In the three-bar linkage the acceleration #; of point 1 is given; to construct
the acceleration of point 2.

Now we ask for the location of the acceleration pole of bar 12. We
lay off #,; at point 2 and note the angle 120;;. This is laid off at
point 1, angle F1P,, and the pole P, found such that

1P, _ 12
¥ D1

The reader should check all of this, and also verify that angle P41F
equals angle P,2E, as it should.

¢. The Rolling Wheel. The last example to be discussed in this
article is the rolling wheel, for which Fig. 175 (page 201) shows the
velocity diagram. If the wheel rolls at uniform speed the velocity of
the center C is constant in direction as well as magnitude; thus C is
the acceleration pole, and the pattern of accelerations is as in Fig. 179a.
This is a result that was found analytically on page 172 (Fig. 151).
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The rolling-wheel problem is more complicated when the wheel is
accelerated; then the motion of the center C is determined not only by
the horizontal speed vc = ag, but also by the horizontal acceleration
ve = a¢. To find the acceleration of a second point, we return to the
equations on page 172 for a point on the peripbery. The differentia-
tions from the velocities & and ¢ to the accelerations £ and 3 were there

Fia. 184. The accelerations of various points of an accelerated, rolling wheel.
performed assuming that the angular speed ¢ was constant, which now
is no longer the case. For a variable ¢ these accelerations become

% = ap(l — cos ¢) + ap? sin ¢
9 = ag sin ¢ + a@? cos ¢

and for the bottom or contact point A of the wheel ¢ = 0,
so that

ia=0 and Ha = ap?

which means that the acceleration of the contact point A is the same
whether the wheel is accelerated or not; it depends on the velocity
only. Figure 184 shows the case where the acceleration of the center
a¢ is numerically equal to the acceleration of the contact point ag?.
The reader should verify that the acceleration pole P, is located as
indicated in the figure and that, as a consequence, the accelerations of
the points D,E, and F are as shown.
Problems 221 to 228.



CHAPTER XII
MOMENTS OF INERTIA

39. The Principle of d’Alembert. Up to this point we have care-
fully avoided the familiar terms “inertia force” and ‘centrifugal
force,” but now the time has come to introduce these concepts. Con-
sider a particle of mass m on which a force F acts, so that it experiences
an acceleration & = F/m. Now imagine that an additional force
m# is applied to the particle in a direction opposite to F (or a force
—mi in the direction of F). Obviously the particle is then in equilib-
rium. In any physical case the force —mi does not exist (there is no
push or pull from another body or a pull of gravity): the force —mi is
fictitious, and it is called the inertia force. Algebraically Newton’s
Law can be written

F =méi
or
F—miéi=F+4 (—m#) =0

and it can be stated that

The sum of all forces, including the “inertia force,” acting on a
particle is zero, or

A particle is in equilibrium under the influence of the forces acting
on it, provided the “inertia force” is included aniong the forces.

For example, a freely falling stone has only one force acting on it,
the weight W, and as a result it experiences a downward acceleration
g; however if we would imagine two forces to be acting on it, the
weight W downward and the inertia force —mg downward or myg
upward, the stone would be in equilibrium,

In case the acceleration of the particle is a centripetal accelera-
tion, directed toward the center of curvature of the path, the cor-
responding outward inertia force is called the centrifugal force. Con-
sider for example a stone whirling in a horizontal plane at the cad of a
string that forms the radius of the circular path of the stone, and for
simplicity, let gravity be negligible. There is only one force acting on
the stone, the string tension T, under the influence of which the stone
experiences a centripetal acceleration 7’/m. In the new manner of
talking, however, we would say that the stone is in equilibrium (has

211
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zero acceleration) under the influence of the inward force T and the
outward centrifugal force mv?/R. The balls of the governor of Fig.
166 (page 193) have a centripetal acceleration caused by the inward
horizontal components of tension of the bars, or in the new language,
the balls are in equilibrium under the influence of the inward horizontal
bar tensions and the outward centrifugal force.

All of this is of no particular usefulness on examples containing
only a single particle, but it does become important when applied to
larger bodies, which can be considered as built up of a large number
of particles rigidly tied together. In Fig. 185a let such a body be in a
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Fic. 185. A parallel acceleration of a rigid body can be caused by many small parallel
forces & Am or also by a single force acting on the center of gravity.

state of uniform acceleration §, which means that all points of the body
have equal and parallel accelerations, and let us ask what force we
have to exert on the body to bring that about. One way of doing
it, obviously, would be to attach a little string to each constituent
particle Am, and pull on each such string with a force § Am. If we did
it in that manner, no internal mechanical cohesion between the
particles would even be necessary: a swarm of loose grains would move
just as described, if each grain had the right pull exerted on its string.
But by the principles of statics (Chap. I) the many little string pulls
& Am are statically equivalent to their resultant, which is the single
force §T Am = #m acting through the center of gravity of the body.
Suppose then we replace the many small pulls of Fig. 185a by the single
large pull of 185b.

If we had a swarm of loose grains, the one grain in the center would
get a very large acceleration, and all the others would remain at rest.
But if the body hangs together, a state of uniform acceleration will
still be possible. On the center particle acts not only the large force
§m, but in addition to that, the pushes and pulls of the neighboring
particles in contact; these latter forces we call the “internal forces.”
If there are N equal particles Am and the total force is N§ Am, these
internal forces on the center particle are —(N — 1)§Am. On all
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other particles we have only internal forces. The sum of all internal
forces on all the particles is zero, because by action equals reaction
they all cancel each other. In this manner the force §m is distributed
over all the constituent particles, and the complete body (185b) has
the acceleration § in all of its points.

With the new concept of “inertia force” we can repeat this story
with different words, and with Fig. 186 -
we can say that the large body is in 4
equilibrium under the influence of the
sum of the externally acting forces (§m -5dm

]

k.4

in this case) and the inertia force (— §Am). - > Sm
Or, to repeat it once more, the Newton h NEQ
equation of one constituent particle can 1
be written F1a. 186. A body is in equilib-

rium under the influence of.its

Fai 4 Fui— §Am =0 aEinary) inertia foreas. Y U

The sum of all external forces on all the particles is R, the resultant of

the external forces on the body. The sum of all internal forces on all

the particles is zero, because they cancel by action equals reaction.

The sum of all inertia forces is —§= Am = —&m. Thus the body is

acted upon and is in equilibrium by the two forces, R and the (imagin-

ary) inertia force —&m. Thus the large body acts exactly like a
single particle, and we come to the conclusion that

A rigid body of any size will behave as a particle if the resultant of
its external forces passes through its center of gravity, or if all points
of the body describe equal and parallel paths.

This is the justification for the procedure followed in the examples
of Chap. X, in particular of that of Fig. 164 (page 192). We will
return to this question once more on page 235.

The method just discussed, and illustrated by Figs. 185 and 186
applies not only when all particles of the body have the same accelera-
tion, but also when these accelerations differ from point to point in
the body. Then the method becomes of importance and gives us a
means of analyzing the dynamics of such motions. It was originated
by d’Alembert (1717-1783) and can be expressed as follows:

The principle of d’Alembert states that the internal forces or
stresses in a rigid body having accelerated motion can be calculated
by the methods of statics on that body in a state of equilibrium under
the influence of the external forces and of the inertia forces.

As an example consider (Fig. 187) a uniform bar of total mass m
being pulled in its own direction at a quarter-length point by a string
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in which the force is . The acceleration of the bar (which acts as a

. N . . Al
particle) is F/m, and the inertia force acting on an element Al is F T to

the left. The longitudinal force diagram, found by statics, is as
sketched in the figure. In particular, if we isolate a small piece Al of
the bar just at the point of attachment of the rope, the forward face

/—ﬂﬂ
lﬂﬂﬂ
P2l

F16. 187. A bar being pulled in a longitudinal direction by a force F acting at a quar-
ter-length point.

ry 24

has a compressive force of almost F/4; the aft face a tensile force of
almost 3F/4; the sum of these being not quite equal to the rope pull 7.
The small difference is required to accelerate that short piece Al
The front quarter bar is being pushed and the rear end is being pulled
forward. In connection with this example the reader is advised to
return to the remarks on page 5, explaining the axiom of transmis-
sibility of forces.

.
o
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F1a. 188. An accelerated angular motion about a fixed peg O (for zero speed) can be
brought about by many small tangential forces &r Am, or also by a single force having
the same moment about the peg O.

The next case to which we propose to apply d’Alembert’s principle
is that of a body which has an angular acceleration & and zero speed w
about a fixed axis. In Fig. 188 that axis is perpendicular to the paper
and thus appears as the point 0. Consider the body again as a swarm
of unconnected particles Am; then with the motion as prescribed, the
tangential component of acceleration of a particle at radius r is ra,
and the tangential force required to move that particle is ro Am. This
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time we do not care about the resultant of all these forces, but we do
ask for the resulting moment about the axis O. The moment of one
small force is ar Amr = ér? Am, in which  is the same for all particles,
while the (double-headed) arrow of the moment is directed perpendicu-
lar to the paper and is also the same for all particles. Therefore the
total moment is simply the algebraic sum of all the small moments or

Moment = Zor? Am = o3r? Am
or in the limit when the Am’s become very small and very numerous
Moment = &fr? dm

This moment can be applied to the body in the form of many
small tangential pulls ar Am, in which case the loose swarm of uncon-
nected particles will move as a whole. If, however, we replace the
moment of the many small pulls by an equal moment caused by one
large force, as in Fig. 1885, the body will
still accelerate with & as before, but now
internal forces are required between the
individual particles. Figure 188 can be
said to be the rotational equivalent of
Fig. 185.

The same story in the language of
d’Alembert’s principle leads to Fig. 189,
equivalent to Fig. 186. Here the body
is in rotational equilibrium about the axis Fie. 189. A body in rota-
O under the influence of the clockwise ‘:;Ti) ﬁﬁﬁib{ﬁ‘;’?nﬂ?,‘;‘,’,‘c‘ﬁ 1:,1}
moment of the single large force and the ore external force and many
counterclockwise moment of the many small small "inertia forces.
inertia forces. The counterclockwise moment of these inertia forces is

Moment = ofr?dm = &l (10a)

in which the integral, denoted by I, is called the moment of inertia.
Thus the definition of that term is

The moment of inertia of a body about an axis is the moment of the
inertia forces caused by a unit angular acceleration of the body about
that axis, and is expressed by T2 dm.

The third and last application of d’Alembert’s principle in this
article is to the case of Fig. 190, where a flat plate is shown in the zy
plane. This plate rotates at uniform angular speed w about the z axis,
80 that the position shown is only an instantaneous one. We want to
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know the bearing reaction forces caused by the rotation » only (and
we are not interested just now in the static bearing forces due to the
weight of the plate). We apply d’Alembert’s principle directly by
introducing the inertia forces, which are here centrifugal forces. They
are directed outward, 7.e., opposite to the accelerations of the particles.
Under the influence of these centrifugal forces and the bearing reaction
forces the body must be in equilibrium. The sum of all the centrifugal
forces is
Total centrifugal force = [w2y dm = w2y dm

which is zero only if the center of gravity lies on the z axis (see page
33), and we will suppose this to be the case. Then the two bearing
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Fie. 190. Inertia forces acting on a rotating flat plate, with its instantaneous position
in the plane of the drawing.

reactions must be equal and opposite for vertical equilibrium. The
next equilibrium condition to be satisfied is that the moment of all
inertia forces about point O in the zy plane cancels the moment of
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Fig. 191. If to a perfectly symmetrical rotor two extra masses m; are added, the rotor
acquires a product of inertia about the bearing axis, and bearing reaction forces appear.

the two bearing forces. The moment arm about O of a small centri-
fugal force is z, and thus the moment of all the centrifugal forces about
Ois

Moment = [wiry dm = w?fzy dm = w4y (10b)

The integral of this expression is known as the ‘‘centrifugal
moment” or as the “product of inertia.”” Thus we define
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The product of inertia, also called the ‘“centrifugal moment” of a
plane body, referred to a set of perpendicular axes z, y, is the moment
about an axis perpendicular to the zy plane of the centrifugal forces
caused by unit angular velocity about the z axis, and is expressed by
Jxy dm.

The bearing forces in Fig. 190 thus are w2, divided by the distance
between the bearings. We see from Fig. 190 that for a symmetrical
plate the integral I,, is zero because the moment of particle a cancels
that of particle b, etc. In technical language, the bearing forces due
to the rotation of a ‘‘balanced” rotor are zero. A rotor is “‘unbal-
anced,” if as in Fig. 191, it has in addition to a symmetrical body two
extra masses m; in opposite corners. Then

Jzy dm = miab + mi(—a)(—b) = 2miab

and the bearing reaction forces are 2mw?ab/2c.

Historical Note. The original statement of d’Alembert’s principle as it
appears in his “Traité de dynamique,” page 74, 2d ed., Paris, 1758, is as
follows:

“From the foregoing we deduce the following Principle for finding the
movement of several bodies that act on one another. When the movements
A, B, C, etc., that are imposed on each body are resolved each into two com-
ponents, a, a; b, 8; ¢, v; ete., in such manner that if only the movements a, b, ¢
had been imposed on the bodies, they could have conserved those movements
without hindering each other reciprocally; and if only the movements «, 8, ¥
cte. had been put on the bodies, the system would have remained at rest; then
it is clear that A, B, C are the movements which these bodies take in virtue of
their action.”

The reader undoubtedly will have some difficulty understanding this,
because the nomenclature of mechanics in 1758 was not as well established as
it is now. D’Alembert uses the French word mouvement first in the sense of
“motion,” then in the sense of “force.” If we interpret the “movements A,
B, C” as ‘““external forces acting on the various elements,” the ‘“movements
a, B, 7" as “internal forces,” and the “‘movements a,b,c’” as ‘‘negative inertia
forces +3§ dm,” the meaning comes out a little better. The phrase that “if
only the forces +3& dm had been imposed on the bodies, they could have con-
served their motion without hindering [.e., pushing] each other reciprocally”
refers to the swarm of unconnected particles discussed in connection with
Figs. 185 and 188. It is interesting to note that d’Alembert in 1758 used the
phrase “it is clear that . . . ” in about the same sense as modern writers do.

Problems 229 to 234.
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40. General Properties. Moments and products of inertia are of
great importance in mechanics. Therefore we will devote this entire
article to a study of the general properties of integrals of the form
fztdm and [zy dm.

Consider in Fig. 192 a particle dm, part of a larger body, situated
at location z,y,2. The moments of inertia about the three coordinate
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Fia. 192. A particle dm located at z,y,2 and its distance from the various axes and
planes.

axes, by the definition of page 215, are
J@*+ 29 dm, [ +2)dm,  [(@+ ) dm
We can write all sorts of similar integrals, for instance:
Jz2dm fy2dm fz2dm,

which are called planar moments of inertia, because z, y, and 2 are
the distances to the coordinate planes, but a body cannot rotate about
a plane and hence these integrals have no physical meaning. In
analogy, the real moments of inertia are sometimes called azxial
moments of inertia, because their distances are measured to the coor-
dinate ares. Another integral without much physical meaning is

J@* + y* + 22 dm

called the polar moment of inertia, because the distances are to
the origin of coordinates or to the pole. From these definitions we
see that

The polar moment of inertia equals the sum of the three planar
moments of inertia and also equals half the sum of the three axial
moments of inertia.
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Sometimes the planar or polar moments of inertia are easier to
calculate than the axial ones, and then the above relations are useful
for finding axial moments of inertia. In mechanics we are not inter-
ested in planar or polar moments; they serve only as auxiliary quanti-
ties in the calculation of the axial moments, ¥

which we need.
In case the body is flat, or two- x
dimensional, the coordinate z is zero, and o v

the axial moments about the three axes
become (Fig. 193) u
f.’l:2 dm, fy2 dm, I(xz +y7) dm Fia. 193. For a flat plate the
The last expression is the axial moment g°l(‘t‘£e’:°x;tl:‘t}i:‘:‘f$ about
about the z axis, but it is also the polar moments of inertia about the =
moment about the origin 0. It is usually 2°d ¥ 2%es.
called “polar”’ moment, which in this case does have physical mean-
ing. It is seen to be the sum of the moments about two perpen-
dicular axes in the plane of the flat body.
An important property of moments of inertia is expressed by the
parallel-axis theorem, to which we now turn our attention. Suppose
we know the moment of inertia about a certain axis, say the z axis of

x,

z z’
——— ———

/

S

F1a. 194, Illustrating the proof of the parallel-axis theorem.
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Fig. 194; how can we derive from that the moment of inertia about
another axis parallel to the first one, say 2’? Let the coordinates of a
particle dm be z,y,2 in the O coordinate system; then from Fig. 194
we see that these coordinates in the displaced O’ system are 2’ = z — g,
y’ =y, and 2’ = z. We then write

Ir = [@"* + y") dm = [[(z — a)? + y?]dm
= [(z* — 20z + a® + y?) dm
= [(z* + y?) dm + [a*dm — [2ax dm
= I, + a’m — 2afz dm
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The last integral we have seen before on page 34, and we recognize
that this integral is zero if the z of the center of gravity is zero, or if G
lies in the yz plane. This we will now assume to be the case and to
indicate it we add a subscript G to I,, which now becomes I,,, Then

I, =1,,+ a*m (11a)

or in words:

The moment of inertia of a body about any axis equals the moment
of inertia about the parallel axis through the center of gravity plus the
product of the mass of the body and the square of the distance between
the two parallel axes.

Fia. 195, Toward the proof of the parallel-axis theorem for products of inertia.

The reader might object to the above proof, arguing that it holds
only for a parallel displacement in the z direction (Fig. 194) and not
for the y direction or a skew direction. The answer to this objection
is that coordinate systems exist for the purpose of serving us and if
the z axis and the direction of parallel displacement of that axis are
prescribed, we can lay the z axis in the latter direction, and therefore
the proof, as given, holds for a parallel displacement in any direction.

An important corollary of the parallel-axis theorem is that among
the moments of inertia about many parallel axes, the smallest possible
I belongs to the axis passing through the center of gravity. _

There is a similar parallel-axis theorem for products of inertia. If
the product of inertia of the flat plate of Fig. 195 about the center O
is Iy = [zy dm, what then is I.,, with respect to the displaced axes
7', y’'? The coordinates of any particledmarer’ = z — a,y’ = y — b.
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Then we can write

Iy = [2'y dm = [(z — a)(y — b) dm
= f(zy — ay — bz + ab) dm
= fzydm — afydm — bfz dm + abf dm
= I, + abm — afydm — bfz dm

The last two integrals, by page 34, are zero if the origin O of coordi-
nates is the center of gravity, which we now suppose to be the case,

Yt oy

Fi1a. 196. The product of inertia about the z, y axes through the center of gravity Gis a
positive quantity; by shifting the axes to O’ the product of inertia is made sero, by
balancing the positive, shaded contributions against the negative, non-shaded part.

so that I, is written with subscript G. Then
Loy = Iy + abm (11b)

or in words: The product of inertia with respect to two axes z’,y’
that are parallel to the axes z,y of the center of gravity is given by
Eq. (11b), in which a and b are the z and y coordinates of the new
origin, O’, with respect to the center of gravity.

In this case the I, is not the smallest possible product of inertia,
because the quantity abm to be added to it may be positive or nega-
tive, depending on the signs of @ and b. 1In fact, Eq. (11b) indicates
that it is always possible to find a new center O’ for which the product
I.,» becomes zero, by making a and b of opposite sign. This is illus-
trated in Fig. 196, where a is negative, and b positive, such that the
positive contributions to the integral about 0’ (which are shaded),
are canceled by the unshaded negative contributions.

Besides a parallel shifting of axes a rotation of the coordinales axes about
the origin leads to some interesting properties. In the Gzy system of Fig. 196
the product of inertia is seen to be positive, because most of the massof the
body lies in the quadrants where z and y are of equal sign. By turning the
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axes through approximately 45 deg about &, the axes become roughly sym-
metry axes of the body and the product of inertia is zero. For still further
rotation the product becomes negative. We will now study this situation in
detail. In Fig. 197 the origin O is an arbitrary point of a flat, two-dimensional
body; in general O is not the center of gravity. We choose through O a set of
rectangular coordinate axes zy so that the product of inertia I., is zero for
those axes. We have just seen that this is possible for a body shaped like
Fig. 196; we will verify later that that is always possible. Then we determine

I, = [y*dm and I, = [z2dm

and ask whether we can express the moments and product of inertia I.s, I,/
and I+, with respect to a set of axes #’,5’ in terms of the original I, and I,

dm
xl
B
CAX
| BYS
[
x
A

Fia. 197. The coordinates of a point dm can be expressed as z,y or also as z’, .

(I.y is zero). In Fig. 197 the coordinates z,y of a particle dm are drawn in the
heavy lines OA and AP; the coordinates 2’,3' in the wavy lines OB and BP.
The first step is to express #',y’ in terms of z,y, which is done by projecting
the heavy L-shaped line OAP, first on the ' axis, then on the y’ axis, with the
result
%' =0B=0C+ BC = 0A cosa + AP sin o
=g cosa + ysina
y' =PB =PD — BD = APcosa — OAsina
=ycosa — Tsina

Then we calculate the new moments of inertia.

I.. = [y"2dm = {(y cos @ — z sin a)?dm
= cos? afy? dm + sin? afz? dm — sin a cos afzy dm
= I.cos?a+ I, sin? ¢ ~ zero
Iy = [z'y dm = [(z cos a + y sin @)(y cos & — z sin a) dm

sin & cos a(fy?dm — [z?dm) + (cos® a — sin? @) fzy dm
= gin & cos (I, — I,) + zero

Thus the problem is solved, and it is seen that for & = 0 the new I values equal
the old ones, as they should. There is a convenient graphical representation
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of these results due to Mohr (1880).
different form:

To show it, we rewrite the equations in a

I,»=I:—2—t—1—"+b—2_llcos2a

-1,

Iy = sin 2a

It is easy enough to verify that these expressions are the same ag the previous
ones, and much harder to derive the new ones from the old ones. But the
new expressions are capable of graphical interpretation, as shown in Fig. 198.
First we lay off the value of I, as OA, and I, as OB. Then we construct a
circle on AB as diameter. The radius of this circle is seen to be (I. — I,)/2
and the distance OC = (I. + I,)/2.
Then OF = Iy and DE = I, if we
make ZACD = 2a. Comparing Fig.
197 with Fig. 198 we can say that the
abscissa and ordinate of point Din Fig. D
198 represent the moment and product '
of inertia of axis z’ in Fig. 197, or {2l \ Moment
shorter that point D represents the [7]

B C E axis
inertia propertiesof axisz’. Similarly

point A represents axis z, and point
Fie. 198. Mohr's circle. The abscissa

Product
axis

B represents axis y. The points A
and B in Fig. 198 are 180 deg apart;
their corresponding axes in Fig. 197
are 90 deg apart, as they should be.

OFE of a point D on the circle represents
the moment of inertia about the z’ axis in
Fig. 197. Similarly the ordinate ED of D
represents the product of inertia about
the axes z’,y’ of Figs. 197.

We can read off Fig. 198 that the
maximum and minimum moments of inertia occur for those axes where the
product of inertia is zero. These axes are called the “principal axes of
inertia.” Also we see that the product of inertia reaches a maximum at 45
deg between two principal axes of inertia. In case the iwo principal moments
of inertia are equal then all moments of inertia about any axis are equal, be-
cause the whole Mohr’s circle of Fig. 198 shrinks together to a point.

Mohr’s circle is more important in strength of materials than it is in
dynamics. In the strength of materials it affords a means of finding the
tensile and shear stresses in the material.

In the theory of bending of beams, expressions like
fz?dA or [ydA

appear where dA is an element of area, instead of mass as before.
These quantities are measured in inches? or feet! and, of course, have
nothing to do with inertia, because there is no mass in them. Never-
theless, they are often called area moments of inertia. The theory for
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‘““area’’ moments of inertia is identical with that for “mass’’ moments
of inertia. If an area moment of inertia for a flat plate has been calcu-
lated, the mass moment of inertia [z?dm follows by multiplication
with the mass per unit area of that plate.

The units in which a moment of inertia is measured are length
squared times mass (or area).

We can write

I = [rtdm = mk? (12)

in which % is a length, called the “radius of gyration.” The moment
of inertia of a body about an axis is not changed if the body is replaced
by a concentrated particle of equal mass located at a distance from
the axis equal to the radius of gyration.

This concept is useful for visualization. The radius of gyration of a
heavy-rimmed wheel with light spokes is almost R, while for a uniform
circular disk it is about 0.7R. After a numerical calculation we can
quickly divide the answer I by the mass m, and compare the & thus
found with the dimensions of the body, which gives us a means of
detecting gross numerical errors.

41. Specific Examples. The two most important objects in engi-
neering mechanics for which we want to know the moment of inertia
are the bar and the disk, because a large number of practical shapes
can be reduced to these two elements. First, we consider a uniform
linear bar of length I, of negligible sidewise dimensions, and of total
mass m (Fig. 199). We take the origin of coordinates in the center
of gravity G and lay the z axis along the bar. The mass of an ele-
ment dz is m dz/l, and the moment of inertia about the y or z axis is

1

2 L (m mz’

= 2 — —_— ——
I /_%x (l d:z:) T3

and, by the parallel-axis theorem (page 220), the moment about a
transverse axis at the end E is

mi? \? 1,1 ml?
ﬁ““"(é) =m”(ﬁ+z>=T

Thus, summarizing, for a linear bar:

+

N e

_m(r B _me
12

T 2%

-~

.-

_m _ml
Io=T5 Ia=% (13)

From this fundamental formula, which should be memorized, several
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others can be derived by inspection. Consider, for example, the flat
plate of Fig. 200, and take first an axis in the plane through G. The
distance of a mass element from that axis is not changed if the ele-
ment is displaced parallel to the axis. Imagine, then, the whole plate

25
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Fic. 199. Moments of inertis of a Frg, 200. Moments of inertia of a flat
bar. rectangular plate.

squashed horizontally into a heavy vertical line through G of length a,
and of the same total mass m as the plate. By this squashing process
no element has changed its distance from the axis, hence the value of I
has not changed, and is ma?/12 by Eq. (13). Exactly the same argu-
ment holds for the axis through the end E in the plane of the plate;
I = ma?/3. About an axig through G perpendicular to the plate, we
have
I=[rrdm = [(z*+ y®) dm = [z2dm + [y?dm

The first of these integrals is one in which all mass elements are

at distance z from G@; 7.e., the plate is 2\
squashed into a vertical rod: I = ma?/12. w’}“’b
The second integral similarly means the g
plate squashed into a horizontal rod with 7=

I = mb2/12, and the total moment is the T_
sum of these two, as shown in Fig. 200.

The axis through E perpendicular to the |} /
plate is at distance a/2 from and parallel i

to the previous axis, so that we have to -6~
add m(a/2)? to the previous answer, again Fre. 201. The expression for

N . the moment of inertia of a rec-
shown in Fig. 200. tangular block is the same as

Figure 201 shows a solid rectangular that for a flat plate.
block with its central axis parallel to the side ¢. This block can be
squashed into a flat plate ab of zero thickness and the same mass as
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the block without changing the distance of any particle from the

axis. Hence the moment of inertia is found by the same formula as

the flat plate, and the dimension ¢ appeais only buried in the letter m,
the value of which, of course, is proportional to ¢ as
well as to g and b.

The next case we consider is a flat uniform cireular
disk of radius R and total mass m (Fig. 202). We
are to find the value of I about a central axis per-
pendicular to the disk. For an element we take a

Fie.  202. A thin ring of thickness dr, of which all parts are at equal

uniform flat cir- . . e e e
cular disk, distance from the axis. The mass dm of this ring is

dm = dA _  2mrdr _ 2m d
m=m=—r =m—p = prrdr

and hence the moment of inertia is

R R
2m 2m mR?
= 2 v 3 =
ﬁ 5 rdr sz; r3dr 3

This result is indicated in Fig. 203. The moment of inertia about &
diametral axis in the plane of the disk is obviously equal to that
moment about any other diametral axis in the plane. On page 219
we saw that the polar moment of inertia equals the sum of two dia-
metral-axis moments; hence that mo- 2
ment is half the polar moment, as —'%@
indicated in Fig. 203. Summarizing, we

mR?

have for a uniform disk \/ 3
2 2
Lo =" Lo = LT / mr?
which formulas should be memorized. _/’

The radius of gyration, %, for a rotat-
ing solid wheel (page 224) thus is B/+/2 Fro. 203. Axial and diametral
or 0.707R, and the moment of inertia of ~Homents of inertia of a uniform
such a uniform disk is the same as that of
a heavy rim of 70 per cent radius of the same weight as the uniform disk.
Figure 204 shows a uniform cylinder of radius R and length [.
The moment of inertia about the usual longitudinal center line is not
changed by squashing the cylinder down to a thin disk of radius R
and the same mass m. Next consider a diametral axis through the
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center @. To reach any mass element from G we first move a distance
z along the center line and then a distance y vertically up. Hence

I =[(z*+y?)dm = Jz2dm + [y*dm

The first term is the I of the cylinder when squashed radially into a
heavy center line, while the sec-
ond term is the I when the cyl-
inderissquashed to a thin circular
disk. Therefore

mit | mE?

I'=1g+-3

as indicated in the figure. Mo-

Fi1a. 204. Moments of inertia of & uniform
ments about other axes are found  solid cylinder.

by the parallel-axis theorem.

Let us apply the foregoing to a composite example: the crank of
Fig. 205 of crank radius R., shaft radius and length R, and /,, crankpin
radius and length R, and [, and crank cheek dimensions h, w, ¢, and a.
First we calculate the weights of the various parts in pounds and find

—ﬂ-f_q— [p--z-—ir— e ~ - -2 -
L3
"'ls"' Tj i \\/e

A

—
0 193

F1a. 205. A crank structure, made up of cylinders and parallelepipeds, for which the
moment of inertia can be written immediately from Eqgs. (13) and (14) and the parallel-
axis theorem.

the answers W, for the pin, W, for one cheek and W, for one piece of
shafting. Then, the moment of inertia about the main shaft is

W.R; , W,(R} . 2W,{ h* + w? h 2
27'2'+g(2+R°+g 17 t\2
which should be carefully checked by the reader.

A problem arising in the operation of adjustable-pitch airplane
propellers (page 238) consists in finding the product of inertia of a
bar inclined at angle & with respect to the z axis (Fig. 206). Here, for
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an element dm = m ds/l, we have z = s cos a and y = s sin a, 50 that

1
Y /’\ m . 3
. I, = | zydm = = sin a cos a 82 ds
B 5o ¢ -
,// \Q & x mlz

= ——= 8in «a cos —m—lzsin2
\ Tz faecsa=op «

This answer can be read off immediately from
Fie. 206. To determine the Mohr-circle diagram (page 223); it is seen
the product of inertia of a {0 be zero for the positions @ = 0 and a = 90°,
berin  skew position & 1 i 01 are the positions where the moments of
inertia about the z axis are minimum and maximum, respectively.

To find the moment of inertia about a diameter of a uniform solid
sphere of radius R, first solve the simpler problem of the polar moment
of inertia. For the mass we take a spherical eggshell of thickness dr
and radius r and of mass

2

dxridr 3m

44xR3 =R rtdr

All points of this shell are at equal distance from the pole or center.
The polar moment of inertia is

3m [ 3
I,d..=§;/‘; r‘dr=ng’

By page 218 this is half the sum of the three diametral or axial moments
of inertia, which, by symmetry, are all alike. Therefore the axial
moment of inertia we are seeking is

Tgumera = 36mR?  (s0lid sphere)
A

If the sphere is cut in half through the

center, the moment of inertia of the half

sphere about a diametral axis, of course, B

is half as large as that for the whole Fia. 207. The moment of inertia
sphere. Nevertheless in Fig. 207 the ©°f #olid half sphere.

same formula is written as for the whole sphere, and the factor 14 is
neatly buried in the letter m, which always means the mass of the object
we are dealing with. To find the value of I about a tangent line Bat the
bottom of the half sphere, we might be tempted to use the parallel-axis
theorem and add mR? to the 34mR? of the diametral axis A. This

2 2
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is wrong because axis A does not pass through the center of gravity of
our object. The correct procedure for finding the moment of inertia
about axis B is first to find the location of the center of gravity, then
to shift from axis A to the gravity axis and from there to axis B, by
the parallel-axis theorem. This is left as an exercise to the diligent
reader.

The determination of the moments of inertia of other bodies with
shapes expressible by mathematical formula, such as segments of
spheres, cones, paraboloids of revolution, and the like, is a question of
formal integration. For many practical objects in engineering no

- 8§
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01234561789
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(a)
Fi1G. 208. The moment of inertia of a propeller is best determined by numerical integra-
tion in tabular form.

such expression can be found, as for example in the ship’s propeller
of Fig. 208. In such a case we proceed arithmetically in tabular form.
First we draw a number of concentric circles on the propeller drawing;
the greater the number 7 of circles, the greater the amount of work and
the better the accuracy of the result. The blueprint drawing usually
shows a number of cross sections as in Fig. 208b. These are plani-
metered and the cross-sectional areas A plotted against the radius in
Fig. 208¢ and the curve smoothed out. Then in a table of » horizontal
lines we write in the area A4, the distance dr between circles, the volume
A dr, and the product 724 dr. The n items in this last column are
added and the result gives approximately '

Jr*d volume

or the “volume” moment of inertia, expressed in inches®. This figure
is multiplied by the weight per cubic inch (0.33 1b/cu in. for bronze;
0.28 Ib/cu in. for cast steel) and the answer then, expressed in lb-in? or
1b-ft2 is the “weight’’ moment of inertia, usually denoted as WR? (and
pronounced as written). The value of I or the ‘“mass’” moment of
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inertia is obtained after dividing by 386 or 32.2, as the case may be.
On the blueprints of propellers, turbine rotors, and the like the WR?
value, usually in 1b-ft?, is often given, rather than the value of I
in Ib-ft-sec?. This is because the weights in pounds of the constituent
parts are usually known, and it does not make sense to divide every
weight by 32.2 in the tabulation. Fewer mistakes are made by keep-
ing the weights themselves throughout all the multiplications and
additions and making the conversion from WR? to I at the very end
of the work by a single division by 32.2 or 386, as the case may be.
Problems 235 to 244.




CHAPTER XIII
DYNAMICS OF PLANE MOTION

42. Rotation about a Fixed Axis. We shall now study the rota-
tional motion of a thin, plane, rigid body about a fixed axis perpendicu-
lar to its plane. The problem was slarted on page 214 (Fig. 188); it
will now be taken up again in a more general form. Whereas in Fig.
188 the body had an angular acceleration but no angular speed, we
now give it both acceleration & and speed w. We ask for the external
forces required to bring about this y

: . w?rdm
motion and for the reaction forces wrdm A
at the axis caused by those exter- , | / ./
nal forces and the motion. Figure o
209 shows the body, and the coor- / /
dinate system Ozxy has been located
with the fixed axis O asorigin. One /
particle dm of the body is shown - x
with its accelerations @r and w?r, o /
and the corresponding inertia forces R
ar dm and «?r dm, directed against
the acceleration. Similar inertia Fe. 209. A flat body pivoted at O,

subjected to external forces Fz, Fy,
forces act on all the elements of the ghowing the ‘‘inertia forces” on a
body. The reader is once more Particle.
reminded that these “inertia forces’ are fictitious and have no actual
existence, as explained on pages 211 and 215. The actual forces acting
on the body consist of the external forces (of which one, F;, Fy, is shown
as a sample in the figure) and the reaction force R., R, exerted by the
axle on the body. Now, by d’Alembert’s principle (page 213), the
body is in equilibrium under the influence of the actual forces F and R
and the (imaginary) inertia forces. The next step in the analysis is to
replace the many inertia forces on the constituent particles by their
resultant, which is a problem in statics. This is convenienily done
by Cartesian components, and Fig. 210 shows the inertia forces of one
particle resolved into those components. We note that the two shaded
“force” triangles and the one location triangle z,y,r are similar, so

that we can write for the Cartesian components f., f, of the inertia
231
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forces on a single particle

fz = w?xdm — oy dm
Jy = oy dm + oxdm

By the theorems of pages 9 and 34, the resultants of these
inertia-force components are

Fonets = [(w2z dm — oy dm)
= wfzdm — ofydm = w'mze — wmye
and similarly
Fyinen = @*mye + omag

The magnitudes of these inertia forces then are the same as if the entire
mass of the body were concentrated at the center of gravity G, and as if
the point G were a particle. Combining
the z and y Cartesian components at G

y wirdm N : .
we see that they combine into one sin-
wrdm gle force mw?rq directed centrifugally out-
ﬁ#& “xdm  ward, and one single force mars directed
wydm tangentially counterclockwise. Thus we
have the magnitudes of the resultant in-
ertia forces, but not yet their locations or
\ points of action, which determine the
&\ , velue of their moment about the axis
0. We could write the moment equation
g‘e"rtiazlg)me?ei‘zl“:“gi of the about O in Cartesian components (and
Cartesian components. the reader is advised to do this for exer-
cise), but it is clear that in this case
the radial and tangential components are more suitable than the
Cartesian ones. The centrifugal force w? dm has no moment
about O, and the tangential force wr dm has a moment ¢r? dm, or,
integrated over the whole body, the moment of all inertia forces
about O is wlo. This moment is @mk2, where ko is the radius of
gyration (page 224). The moment of the inertia forces concentrated
at the center of gravity would have been @mrg,.which is different,
because in general rq differs from ko.  (This last fact can be understood
most easily for the special case where the center of gravity G coincides
with the axis O; then ¢ = 0, but ko = ks = \/T¢/m is not zero.)
Therefore we see that for calculatmg the magnitude of {he resultant
inertia force we can replace the body by a particle at its center of
gravity, but the moment of all the small inertia forces is determined

by the formula &fo. Summarizing these results in one sentence:

wydm

o
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The angular acceleration « of a thin, flat, rigid body constrained to
move in rotation about a fixed axis O perpeadicular to its plane is
found from the formula:

Moment of external forces about O = Iow (15)

while the reaction forces from the axis on the body are determined by
solving the static equilibrium equations of the body under the influence
of the external forces and of two fictitious “inertia forces’ mar; and
mw’ts, as if the entire mass of the body were concentrated in its center
of gravity.

From this general rule we can at once derive the special case that
if the axis of rotation happens to coincide with the center of gravity,
the axis reaction force is equal, parallel to, and opposite in direction to
(but not in line with) the resultant of the external forces. If in addi-
tion to the coincidence of O with @, the external forces consist of a pure
couple in the plane of rotation, then the axis reaction is zero, and we
may remove the physical axis without changing the motion. Hence,
if the center of gravity of a thin, flat body is at rest and we apply a
pure couple to that body in its plane, the center of gravity will remain
at rest, and the body will experience an angular acceleration about that
center of gravity.

Now it remains to be seen how we can apply the above general
theorem to an actual problem. In such a problem usually only the
external forces are known, while &, «, and the axis reactions are to be
determined. We can start by writing the moment equation about the
axis, in which equation the unknown axis reaction and the unknown
centrifugal force mw?rq¢ do not appear. Only the moment Io@ and
the external forces enter, so that we can solve for the acceleration o.
With the given initial conditions of the problem this can be integrated
to w. At this stage only the axis-reaction components are unknown,
and they can be found by writing the static equations of vertical and
horizontal equilibrium or equivalent equations. This will now be done
on a number of examples.

43. Examples of Fixed-axis Rotation. The following cases will be
discussed:

. The pulley wheel

. The compound pendulum

. The falling trap door

. The adjustable-pitch aircraft propeller

o o8
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a. The Pulley Wheel. A pulley wheel attached with its center to a
fixed ceiling and having tensile forces T’y and T, in the two branches of
its string is shown in Fig. 211, The center of gravity of the wheel is
supposed to be in its axis, the wheel is a uniform disk of radius R and
weight W, and the bearing is assumed frictionless. What is its motion
under the influence of T'; and T'; and what is the axis bearing reaction?
The moment equation about O is

WR?
(Tz - Tl)R = Iow = —29-"(0

This determines the angular acceleration, which is proportional to
the difference in the two string forces. Since the resultant of all the
inertia forces is zero, the axis reaction is equal, parallel, and opposite

to the resultant external force Ty 4+ T,. It is noted

i+ T . .
. 472 that the external forces T, T and the axis reaction
“'/ (T1+ T,) together do not form a system in equilib-
0 rium, but they result in a clockwise couple. This is

the couple that accelerates the pulley angularly.
Equilibrium is obtained only by adding to this the
7, fictitious couple —Iow of the inertia forces, as indi-
Fie. 211. Angu- cated by dotted lines in Fig. 211, Obviously if the
L“;lfﬁ:;l:;':z{l of jnertia of the wheel is zero (Io = 0) the string ten-
sions on both sides are equal (7, = T3), which justi-
fies the statement made on page 191 when we were discussing the pulley
wheel for the first time. To obtain an understanding of the numbers
involved, we now ask for the difference 7, — T, in pounds, required
to accelerate a 6-in.-diameter uniform pulley weighing 2 Ib with
o = 10 rpm/sec. The answer is

z

_WR. 2x3 (10, _
Ta—Tl—Tg‘w—m‘g(-éﬁ%)—OO()Sllb

b. The Compound Pendulum. A compound pendulum is a rigid
body hinged about a horizontal axis not passing through its center of
gravity, and acted upon by its own weight as an external force. It
differs from the simple pendulum (page 184) in that the various con-
stituent particles of the compound pendulum have different motions
and accelerations, whereas the simple pendulum consists of a single
particle only. Figure 212 shows the pendulum acted upon by its
weight W through the point @ at distance a from the axis 0. It is
shown in an arbitrary angular position ¢, measured positive clockwise
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starting from the vertical position of equilibrium. First we solve for
the motion by the moment equation about O:

Iop = —Wasin ¢

The — sign appears, because $, by definition, is positive clockwise
and the weight couple tends to rotate the pendulum counterclockwise.
The equation can be written as

= -—Esin =——% gn
LR ¢= T To/ma™™?
and, on comparing it with the equation of page 185, we conclude that
the motion ¢ of a compound pendulum is identical with the motion of a
simple pendulum of “equivalent” length louy, if
_ Do

lequiv = ﬁ (16)
All conclusions drawn for the motion of the simple pendulum therefore
are applicable to the compound pendulum; in particular the frequency
[Eq. (94), page 185] is

1 [Wea
= [ 9
I=5\T (%)

Suppose the pendulum of Fig. 212 had along
the line OG andits extension alarge number of

small holes fitting the shaft O, so that the dis- o
tance OG = a can be changed by hooking

the pendulum on the shaft through various

holes O; the question comes up of how the mga < e

frequency f or the equivalent length varies
with a@. To understand this relation we
notice that in Eq. (16) the quantity Io de- g

pends on a, because we can write [Eq. (11a), ¢‘»§

page 220]
I, = I¢ + ma? = m(k2 + a? Fia. 212. The compound
’ ( @ a ) pendulum.

and Is or ke is independent of a. We can now rewrite Eq. (16).

k2
leuuiv = E‘G + a
or
_leuuiv a 1

%o ko T afke
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The last form of the equation is called ‘‘dimensionless,” the variables
lwwiv and @ appear as ratios in terms of a constant length ks. The
equation is plotted in Fig. 213, the first term on the right-hand side
being a straight line through the origin, and the second term being a
rectangular hyperbola, both shown in dashed lines. At point A4,
loquv/ke = a/ke = 1, the two curves both have 45-deg tangents, so
that the fully drawn sum curve has a horizontal tangent at B. (This
of course can be verified by differentiating.) We see that the smallest

Fie. 213. Relation between the equivalent length I and the distance between the cen-
ter of gravity and the peg a of a compound pendulum,
possible value of the equivalent length occurs at point B, where
leiv/ke = 2, 80 that

loquiv minimum = 2k0

The equivalent length of a given pendulous body can never be made
smaller than this by adjusting the axis location; this is the shortest
and therefore the fastest possible pendulum. The graph shows that if
the pendulum is pegged very close to its center of gravity (a/ke small),
the equivalent length is very large, or the pendulum is very slow.
The physical reason for this is that the accelerating gravity moment
is very small while the inertia is finite. To get an idea of how a
pendulum in the condition of point B (Fig. 213) looks, consider a
uniform bar of length I. For such a bar, by Eq. (13) (page 224),
we have I¢ = mi2/12 and k¢ = I/4/12 = 0.29]. At point B we have
a = k¢ = 0.29. The pendulum is shown in Fig. 214, and if the
knife-edge is moved either up or down from the position shown, the
pendulum will become slower. However, at this position a slight
change in the location of the knife-edge will make practically no change
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at all in the frequency, because the tangent at B in Fig. 213 is hori-
zontal. This fact has been utilized in the construction of extremely
accurate pendulum clocks for astronomers, and after its inventor, the
pendulum is known as a Schuler pendulum. The
period of such a clock is not affected by wear of the
knife-edge in the course of time.

Now we are ready to return to Fig. 212 to cal- ';ZF%
culate the bearing reaction force. By the general ¢ -+

statement of page 233, this force is equal to the vec-
tor sum of the weight and of two inertia forces, which
can be calculated as if the mass were concentrated
at the center of gravity. This, as can be seen on
page 186, is exaac.tl.y the same as for the simple pen- 52?.;, . fr“l;en?l:‘:
dulum. Summarizing, we can say that a compound Jum is the fastest
pendulum (Fig. 212) acts like a simple pendulum g‘:’:“gf" :“;P:;;
of length lour [Eq. (16)] so far as its motion is con- bar I in a given
cerned, but acts like a simple pendulum of length a g;{(‘l";“‘“”“
in the matter of the axis reaction force. )

¢. The Falling Trap Door. Figure 215 shows a uniform beam of
weight W and length [, supported at both ends. The support at B
is suddenly removed. What is the acceleration of point B and what is
the reaction force at A during the first instant thereafter? The
problem is that of a compound pendulum with @ = /2 and ¢ = 90°.
However, we will solve it here from the beginning again. The moment
equation about A at the first instant is

Wi 1w 1 wi

1
2_IA¢_'3‘g‘P (¢l)=§

T

g B
Therefore
1"?3 = "3"g
2

The far end B accelerates downward 50 per cent faster than a freely
falling particle, and since z varies lin-

P fomoomn -’I 5 early with the distance from A4, the
b A center of gravity has a downward
g w acceleration 34g. The inertia force

Fia. 215. The problem of the fall- .o thus is %W upwa.rd, and the in-
ing trap door. ertia force mrw? is zero because the
door has not yet acquired velocity. Thus the reaction from the
support at A is W/4 upward on the beam. This result is inde-
pendent of the speed w. If the door had fallen from a higher
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position and were moving through the horizontal position with angular

speed w, there would be an additional reaction, at A to the left on the
beam, of (W/g)w*(l/2).

d. The Adjustable-pitch Aircraft Propeller. Figure 216 is a sim-

plified sketch of a four-bladed airplane propeller rotating at constant

angular speed » about the horizontal z

Y axis. In the plane of the propeller, the

z and y axes are along the center lines

| fpwirdm of tv'vo blades al a certain in§tant.

Consider an element dm at point A

B | AJ‘"" 2xdm in one of the blades. That point moves

/ in a circular path in a plane described

| / by the equation z = constant, and ap-

) plying d’Alembert’s principle, the forces

—x in the system can be calculated by stat-

3 ( L_>_ ics if we apply the hypothetical ““cen-

trifugal”’ force w? dm to the element.

This “force” can be resolved into the

components w2z dm and w?y dm parallel
to the axes (see Fig. 210, page 232).

Assume a symmetrical blade as shown.
: Then the y component w? dm of par-
& ticle A and the corresponding com-
ﬁ
</ ]

ponent of particle B, symmetrically
{ X located, are parallel and add up to a
resultant along the y axis. Thus, inte-

Fia. 216. Explaining the centri- gratedover the entire blade, thisbecomes
fugal twisting torque of an airplane
propeller blade. W fydm = w*mye

the centrifugal force of the entire blade pulling up at the root of the
blade, with which we are familiar. Next consider the smaller side-
wise component w?z dm at A and at B. These two forces cancel each
other as far as magnitude goes, but they do form a couple tending to
rotate the blade about the y axis into the “flat” direction. The
moment of the force at A about the y axis is w2z dm 2, and the total
moment of the entire blade is

Moment about y axis = fw%rzdm = wl.,

Thus we see a twisting moment on the blade proportional to its product
of inertia or centrifugal moment. In Fig. 206 (page 228) this moment
was calculated for a flat rectangular blade. In an actual construction
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the value of I, has to be found by numerical or graphical methods.
To get an idea of the magnitude of this ““centrifugal twisting torque”’
on the blade, consider an aluminum airplane-propeller blade, about
1 in. thick, 10 in. wide, and 6 ft long, rotating at 1,500 rpm, and
oriented at & = 30°. Then

W =720 cuin. X 0.10 Ib/cuin. = 72 1b

_m? _ 72 X100 . o _ .
I = 57 Sin 2a = 386 X 24 sin 60° = 0.67 lb-in.-sec?
= -1—’65010 X 2r = 156 radians/sec

Torque = w?l., = 16,300 in.-lb = 1,350 ft-lb

Before leaving this example we do well to consider why it seems to
be more involved than the previous three examples. In the theory of
the previous article, culminating in the rule of page 233, we dealt with
a ‘““thin, flat”’ body, and the axis reaction was a single force in the
plane of the thin body. In the applications on the pulley wheel, the
pendulum, and the trap door the bodies may not have been thin,
but at least they could be considered as built up of thin layers, each
of which was an exact copy of all the others. The trap door, for
example, might be much longer perpendicular to the paper than the
dimension ! shown, but every section parallel to the paper shows the
same picture. This is no longer the case with the aircraft propeller.
The sections for different values of z (Fig. 216) are different, and this
is the reason for the greater complication of our last example.

Problems 245 to 254.

44. General Motion in a Plane. We will now consider the most
general motion of a thin flat body in its own plane under the influence
of forces in that plane. We have seen some simple cases of such
motion before, and we will now once more examine those. The first
case is the parallel acceleration under the influence of a force acting
through the center of gravity, which was discussed cn page 212 in
connection with Figs. 185 and 186. The second case is that of a
free body under the influence of a pure couple only. We saw on page
233 that then the center of gravity will not be accelerated and the
body experiences an angular acceleration about the center of gravity.

Now we are ready to consider the general case of an unconstrained
flat body under the influence of arbitrary forces in its plane, not limited
to a force through @ or to a pure couple. We approach the problem by
resolving the general case into a sum of the two special cases, as illus-
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trated in Fig. 217. In Fig. 217¢ only a single force F is shown to act
on the body; this force can be considered to be the resultant of all
forces acting on it, so that it represents the most general case. The

F Vi

(a) (&) (c) «)

Fi1a. 217. The most general motion (a) of a body in a plane can be considered as the
superposition of a parallel motion (¢) and a rotation about the center of gravity (d).

step from Fig. 217a to 217b is the familiar one of “adding nothing”
(Fig. 7, page 11), and then we see that the system can be considered
as the sum of a parallel translatory acceleration (217¢) and of a pure

rotation about a fixed center of
F  oravity (217d).

This is illustrated once more
in Fig. 218 for the case of a body
starting from rest, <.e. without
centrifugal acceleration. The in-
ertia force for an element dm at
the center of gravity is directed
opposite to the moving force F.
At point A the inertia force is
made up of two components: one
being the translatory acceleration,
which is the same all over the
body and hence equal to —dmdq,
and another one due to the rota-
tion about the point @, directed
tangential to the circle about G
opposite to the acceleration, which
is r&. Thesg two components are
vectorially added and the result-
ant must be the total inertia force

Fia. 218. of the particle, and hence must be

—dméa at location A. From the

figure we see that there must be a particle in the body of which the
inertia force is zero; it is located somewhat farther down than point B
and is the acceleration pole for the motion. Writing this in the form
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of a formula referred to an zy Cartesian coordinate system, we have

EF, = mia
=F, = miq (17
EMG = Iogo

The Z signs are written because there usually are several forces acting
on the body. The symbol M means the moment of all external forces
about the center of gravity, and if we lay the origin of coordinates in
that point G, the moment is TM¢e = Z(F,y — Fyx).

Equations (17) are just about the most important ones in this book;
they will be illustrated and interpreted by examples in the next section.
A few general conclusions we can read out of the equations immediately :

In case the resultant of the external forces passes through the
center of gravity, ¢ = 0, or integrated, ¢ = w = constant. The
angular speed of the body remains unchanged, and the center of
gravity of the body moves like a single particle of a mass m equal to
that of the entire body. As an example of this, consider the parabolic
trajectory of a particle (Fig. 145, page 167), and suppose that instead
of a particle we had a flat circular disk in the plane of the trajectory,
rotating about its center of gravity. The disk is affected only by its
own weight, which passes through the center of gravity, so that the
center of gravity will describe its familiar parabolic path and the disk
will keep on rotating at uniform speed. The path of a point away
from the center of gravity will be a complicated one, a wavy line about
the parabola; nevertheless the disk or rather the point @ of the disk,
behaves like a particle. This is the most general case of plane motion,
and returning to the statement of page 213, we understand that the
word ‘‘or’’ in the middle of the sentence is correct; it should not be
replaced by ‘““and’’ as we would have been inclined to write at that
time.

Another example of the particle-like motion of rotating bodies
exists in the planets. They are attracted by the sun by gravitational
forces, which pass through the center of gravity of each planet.
Therefore the path of the center of gravity of a planet can be found
from the laws of particle motion (page 175), although a steady rota-
tion of the body of the planet takes place simultaneously about the
center of gravity. Still another example is'the diving athlete, whose
center of gravity will describe a parabolic path independent of the
motions of his body.

46. Examples on General Plane Motion. Four representative
examples will now be discussed for illustration of the theory:
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. The rolling wheel

. The center of percussion
. The bifilar pendulum

. The sliding ladder

a. The Rolling Wheel. A wheel of radius r, weight W, and moment
of inertia Is about the center of gravity, which is in the center of the
circle, rolls without slipping down
an incline « (Fig. 219). What is
the downward acceleration?

The forces acting on the wheel
are the weight W and the force from
the incline, which can be resolved
into a normal pressure N and a fric-

\ad tion force F. The latter force may
Fie. 219. A cylinder rolling down an  have any value between —fN and
incline without slipping. +fN. We take as coordinates the
distance z along the incline, and y perpendicular to it; we further let
¢ be the angle of rotation of the wheel. Then 3 = 0, because the
wheel does not leave the plane. The Newton equations [Egs. (16)] are

a0 oK

o

In the y direction: N—Wecosa=mj=0
In the z direction: Wsin a« — F = mé
In the ¢ direction: Fr = I¢¢p

The first of these equations tells us that the normal force is
N = W cos a,

independent of the motion. In the last two equations there are three
unknowns, £, ¢, and F. Thus we lack one equation, and that equa-
tion is supplied by the geometry of ‘“pure rolling without sliding,”
which requires that z = ro, or £ = r¢. Solving the equations for
the unknowns gives

i = g sin a
T1F To/mr
Is . _ %
F=7'§I, ¢=;

This golves the problem, but there are several interesting angles to the
solution, which we will now start discussing.

In the first place, we remember from page 179 that a sliding particle
(without rolling) has an acceleration g sin o down the incline. We
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thus see that the rolling slows down the acceleration by a factor
1 + (Ie/mr?), which is always larger than unity, but which differs
for wheels of different mass distributions. If the wheel consists of
a heavy rim with light spokes we have I = mr? and the motion is
slowed down by a factor 2, as compared to sliding. If the wheel is a
solid cylinder with I¢ = ¥4mr? [Eq. (14)], it is slowed down by a

e

F1a. 220. A wheel of a large moment of inertia in comparison to its rolling radius r will
go down the incline at a very slow rate.

actor 134. We can construct an artificial wheel (Fig. 220) with a
radius of gyration much larger than r, in which the ratio I¢/mr? can
be made 10 or larger; in that manner we can make £ easily as low as
1 per cent of g. In this way Galileo studied the laws of motion of
freely falling bodies, as was discussed on page 180.

A special case occurs when we do away altogether with the inclined
plane and hang the wheel from a string (Fig. 221). 2
This is a toy, called “yo-yo,” which was very popu-
lar for a time. The yo-yo problem is exactly the
same as that of an inclined plane with « = 90°, and
the shape of the yo-yo is such that it descends with
an acceleration g/10 or slower.
Next we have to investigate under which con-
ditions the wheel refuses to roll and starts to slip.

That occurs when Fic. 221. The
yo-yo is a wheel

. rolling down a
F _Iq gsmna tan o vertical inclined

N =7 T F To/mWoosa ~ T F /Ty 27 yorie

If the angle « is sufficiently steep and if Io/mr? is large, the required
friction force F may have to be larger than the maximum possible
SN and slipping will occur. In that case we have to repeat the analysis
with a new assumption. Then F = fN, so that F is no longer an
unknown and the three equations of Newton

N-—-Wececosa=0
Wsin a — fN = mi
fNT=Io(?
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have only the three unknowns N, #, and ¢ and can be solved. The
solution is

£ =g (sin @« — f cos a)

. _1fW cos a

=TI
]

N =Wecosa

which means that the wheel goes down with £, but also starts rotating,
with . Under no circumstances can rg become larger than %, because
then the wheel would overspin itself; it would slip in the uphill direc-
tion. The condition for the validity of the above solution thus is
r¢ § %, which after some algebra, is seen to be identical with the
previous result:

tan «
F< 1 4+ (mr?/Is)

In the solution of the problem of Fig. 219 quite often a short cut is pro-
posed, in which it is said that the contact point C is the instantaneous center
of rotation and therefore equivalent to a fixed axis. Thus we can apply Eq.
(15) (page 233) directly with respect to point C:

Wreina = Icp = (Is + mrd)e

which gives the correct result for $ and.hence for £ with less work. It is true
that the answer so obtained is correct, but nevertheless the method is ques-
tionable. An instantaneous center of rotation or a velocity pole is not a
fixed axis, and Eq. (15) is not applicable to it. A fixed axis, being completely
fixed in space, obviously has no velocity, nor acceleration, nor any higher
derivative of the displacement. A velocity pole has no velocity at this
instant; in general it does have velocity a little later, hence it does have
acceleration. Figure 151 of page 173 shows that the instantaneous center of
rotation of a rolling wheel at constant speed has an upward acceleration,
while the wheel center, moving on a straight line has no acceleration. If the
wheel were pegged to an axis at C (Fig. 219), it would dig into the track after a
small rotation; in that case C would have no acceleration and the wheel center
would have an acceleration towards C if w were constant. The difference
between the two cases thus consists of a centripetal acceleration w?* in the
direction NC and we will see on page 300 that we have obtained a correct
answer for our short-cut analysis only because the inertia force of this “relative
acceleration”” happens to have no moment about point @, An example where
this is not the case and where the proposed short cut leads to an incorrect
answer ig shown in Fig. 222a. The center of gravity of the wheel is off center
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by distance a, and the correct application of Eqs. (17) is

F = mig
N —W = mge
Na — Fr = Ig¢

"
A
i

or, eliminating the unknowns N and F,
(W + mfe)a — méer = Igp
The coordinates of @ can be expressed in terms of ¢ by geometry:

¢ = 1o — a(l — cos )
Yo =T — asing

Differentiation of these expressions gives .
d
&g =re —asing¢ |
g = —acosp@
Zg=TP —acosp @ —asine ¢
Jo =asing@®— acose

Substituting these into the Newton equation leads to an equation for ¢, which
is too difficult to solve in the general case. We simplify the question by ask-

F C
() (6)
Fre. 222, A rolling wheel of which the center of gravity is off center.

ing for the acceleration at the start only, when ¢ = 0, and hence sin ¢ = 0, cos
¢ = 1, but ¢ and $ are not zero. Then .

fo=1h—ap, Jo= —ap
and )

Wa = ma?p + mrip — mrag® + Iop
[Ie + m(a® + r3)]¢ — mragp?
= Icp — mrag?

]

The short-cut application of Eq. (15) about the instantaneous center of
rotation C gives immediately, with much less work,

Wa = Icyp
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which, on comparison with the above result, is seen to be incorrect, since the
second term is missing. This second term represents the inertia force mrg?
multiplied by the moment arm a, as will be explained more fully on page 300.

We see from the above example in small type that the application
of Eq. (16) about an instantaneous center of rotation is not correct; that
equation holds only for rotation about a permanently fixed axis.

b. The Center of Percussion. Consider the straight solid bar of
mass m (Fig. 223), which is supposed to be outside the field of gravity.

]
F1a. 223. The center of percussion § and the center of rotation P.

This may be accomplished by assuming the bar to lie on a horizontal
plane of ice without friction, but in practice we mean that the force S
we propose to apply to the bar is very much larger than its weight,
so that the weight can be neglected for this investigation. The force
S (measured in pounds) has been given that letter because we visualize
it as a shock; a force of great intensity, lasting only a very short time.
We ask for the acceleration of the bar and for the location of the
acceleration pole.

Take a coordinate system with the origin in the center of gravity G,
with the z axis along the bar and the y axis perpendicular to it. Then
Newton’s equations [Eqs. (17)] are

S = mg]a
Sa = Io{b

The acceleration 3 of a point at location z along the bar is thus made
up of two parts: § = S/m, which is the same at all points, and
z¢ = Saz/Ig, varying from point to point. At a point z = b the two
terms cancel each other:

S _ Sab

m  Ig

so that
ab = k2 (18)
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Here a is the distance between the center of gravity G and the center
of percussion S; b is the distance between G and the center of rotation
P, while k¢ is the radius of gyration of G.

We thus define the center of percussion § as the point that can
be struck without causing an acceleration at another designated point
P, the center of rotation. It is clear from Eq. (18) that there is no
such thing as the center of percussion of a body. Its location depends
on the location of P; to each arbitrarily chosen center of percussion
there belongs a center of rotation. In Eq. (18) the letters @ and b are
interchangeable; hence the points P and S bear a reciprocal relation to
each other, which means that if S is the center of percussion for no
acceleration at P, then P is the center of percussion for S as the center of
rotation. It is instructive to follow the motion of P when § moves in
from far away toward G.

The concept of center of percussion has many practical applica-
tions: the most obvious of them is a hammer, which is so shaped that
when the center of shock 8 is located in the hammer head, the center
of percussion is at the handle. Although the inventor of the modern
hammer undoubtedly was blissfully ignorant of Eq. (18), and good
hammers are of great antiquity, some of the tools of primitive tribes
that can be seen in museums violate
the relation (18), and are said to be
“badly balanced.”

¢. The Bifilar Pendulum. The bi-
filar pendulum shown in Fig. 224
consists of a heavy mass, suspended
from two parallel strings AC and BD
and capable of swinging in its plane
under the action of gravity. The
geometry of the device is such that if Fio. 224, The bifilar pendulum
AC and BD swing sideways, turning remains parallel to itself during the
about A and B as fixed points, the motion and hence acts like a particle.
whole line CD remains horizontal: in fact every point of the block,
including the center of gravity G, describes a circular are of radius I,
Thus, by page 241, the block behaves like a particle, and the pen-
dulum is a simple one (page 185) with a frequency

f=gqf (94)

The length, or equivalent length, of the pendulum can be made as
short as we please and is not limited at all by the dimensions of the
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mass m, as it was in the compound pendulum (page 236). This
property has been put to use in the loose counterweights in the crank-
shafts of modern reciprocating aircraft engines, where it was necessary
(for the purpose of limiting the torsional vibrations in the engine)
to have a pendulum weighing at least 5 1b of a length not exceeding
¥4 in. This is obviously impossible with a compound pendulum
and could be accomplished only with a bifilar one.
d. The Sliding Ladder. The sliding-ladder problem is illustrated
in Fig. 225. The friction is assumed to be negligible and the center
of gravity is assumed to be in the center.
! There is obviously no fixed axis of rotation;
B therefore we write Newton’s equations [Eqgs.
(17)] with respect to the center of gravity:

N3=m£q
NA—W=mg]q

! . l .
NB§s1n<p—N4—2 cos ¢ = [gp

o In writing the last equation the moment on
the left-hand side has been written with
such signs as tend to increase the angle o.
The observation that ¢ decreases when the
ladder slides down is irrelevant; eventually we will find a negative
answer for ¢, but in writing the moment equation we know that I
equals the moment tending to tncrease . In solving for the motion,
we first eliminate from these equations the reactions N4 and Np in
which we are not interested at this time.

Fia. 225. The sliding ladder
and its velocity pole C.

l
m=

2sin¢:ka — (W+myg)l§COSgo = Igp

This equation contains three unknowns, e, %s, and ¢, and hence we
need two additional equations. They are furnished by the geometrical
relation between s, ys, and o.

l l .
Ta = 5 COS ¢, Yo = gzsin ¢

For substitution into the Newton equations we have to differentiate
these.

o~

. l . . .
= — = = — COS
Ta 2Slnrp¢ Ya 3 Q@
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In the next differentiation we have to remember that not only the
angle ¢ is a function of time, but the angular speed ¢ also varies with
the time. Thus

- ——l—cos 'Z—I—s'n 7
v = —5C08¢¢’ —58ing
. o b .
Yo = —gsinoe +5003¢¢

Substitution of these expressions into the above equation leads to an
expression several lines long, which, however, simplifies very nicely
under the algebraic operations. The result is

2
—Wlcos ¢ = [Io+m(l§>]¢

The square bracket can be interpreted as the moment of inertia of
the ladder about point O or point C in Fig. 225 and the left-hand side is
the moment of all forces about point C (since N4 and N have no
moment about that point).

Therefore our last result could have been obtained much quicker by apply-
ing Eq. (15) about C as a fixed center of rotation. : The answer happens to be
correct only by the accidental fact (page 300) that the acceleration vector of
point C passes through @, something that is not at all easy to recognize. In
general, the application of Eq. (15) about the velocity pole leads to an errone-
ous result; for example, if the center of gravity should lie off the center of the
ladder, the result so obtained would be incorrect.

Problems 255 to 266.



CHAPTER XIV
WORK AND ENERGY

46. Kinetic Energy of a Particle. In Chap. VIII the concept of
work was defined and discussed. From pages 133 to 137 of that
chapter we take the following propositions:

1.

Work is defined as the product of a force and that component
of the displacement of its point of action, which is in line with
the force.

. This definition is equivalent to that of the product of the entire

displacement and the in-line component of the force, both
definitions being expressed by the formula W = Fs cos a.

. From the definition it follows that work is considered positive

if the force and the in-line displacement are in the same direc-
tion; negative when these directions are opposite to each other.

. Work is measured in foot-pounds or inch-pounds and is a

‘“‘scalar’’ quantity, not a ‘“vector” quantity.
q

. The algebraic sum of the amounts of work done by two or more

concurrent forces on the displacement of the point of inter-
section equals the work done by the resultant of those forces
on the same displacement.

. The work done by a pure couple M on a displacement is zero;

on a rotation through ¢ radians the work done is M.

. The work done by a set of forces acting on a rigid body for an

arbitrary displacement of that body is equal to the work done
by another set of forces, which is statically equivalent to the
first set.

From these propositions we deduced in Chap. VIII (page 140) the
theorem that the work done by all external forces and reactions on an
arbitrary small displacement of a system in equilibrium is zero (pro-
vided that the internal forces do no work). Here we are dealing with
dynamics, where the bodies are not in equilibrium, i.e., they are not
at rest, and we will now consider how this theorem is to be generalized
to apply to moving bodies. We start with a single particle, on which

250
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a single force is acting, and this single force is understood to be the
resultant of all external forces and reactions acting on the particle
(Fig. 226). At first we assume that the

force has the same direction as the velocity _’D —2,
of the particle, which therefore moves in a
straight line. By Newton’s law the mag-
nitude of the force is m#, and while the particle moves through a small
distance dz, the work done is

Fia. 226.

dW = Fdz = midz —-md dz —mdxg':

= mi di = md(14?) = d(}émv*) =dT
or
Fdx = d(34mv?) = dT (19)

The quantity Y4me? is called the kinetic energy of the particle and is
usually denoted by the letter T'; it is a scalar quantity, which is either
zero or positive, but can never be negative. Equation (19) can be
integrated to take care of displacements of finite magnitude:

o Faz = [12 A@4me?) = Yem(E — 08 = Ty — Ty

Expressed in words: The work done by the resultant of all forces
acting on a particle equals the increment in the kinetic energy of the
particle.

This theorem holds in general, although so far we have proved it
only for the case of rectilinear motion, where the force has the same

direction as the velocity. For the
4 general case (Fig. 227), where the force
has a different direction, we choose a
coordinate system with the z axis par-
allel to the velocity at a certain in-
stant, and resolve the force F into an
in-line component F, and an across
(/] component F,. By the fifth proposi-
(1::“; ﬁz_’tic{ﬂ: :a‘;:‘;lg:{:c‘g;eﬁ’f: tion of page 250 the work done by F is
kinetic energy of the particle. the sum of that done by F. and F,.

The work done by F, is the same as
for the case of Fig. 226, and we repeat the calculation.

AW, = F,dz = médz = - - - = d(34ma?)

Similarly

AW, =Fydy = mjjdy = + - - = d(¥4mg?)
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Adding
dW = dW, + dW, = d|Ygm(z® + §?)]

Velocities can be added vectorially (page 162), and since the z
vector is perpendicular to the ¥ vector, we have

By =it =0
and
dW = d(34mv?) = dT

This proves the theorem for the general plane case. For three dimen-
sions, where the force has three components F., F,, F., for a velocity %,
the proof is the same.

We shall now illustrate the theorem with a few simple examples.
First we consider the freely falling body. The force acting on it is
W = mg and while it falls through a height &, the work done by the
force is mgh. By the theorem this equals the increment in kinetic
energy, and if the body starts from rest (7 = 0), we have

mgh = Y4mv*  or v =/2gh

If the body starts with a velocity v at height &, and falls to a lower
N height h;, we have

mg(hy — hy) = Yom(vi — v2)

from which the terminal velocity », can
be calculated.
The next example is the particle slid-
g ing down a frictionless inclined plane
\ (Fig. 228). During the motion the nor-
Fia. 228. The work theorem mal force N does no work, while of the
applied to the problem of the in-  wejght W only the in-line component W
clined plane. .
sin « does work. If the body starts from
rest and slides a distance s along the plane, we have

(W sin a)s = L4mp?

v = V/2(g sin a)s

which is the sliding velocity at the end of distance s.

If there is friction on the plane, the component of force doing work
is Wsin a — fN = W sin a — fW cos «, and the terminal velocity
becomes

and

v = v/2g(sin & — f cos a)s
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If we compare these two examples with the solutions obtained for
them previously by direct application of Newton’s law (pages 176 and
179), we notice that those previous solutions gave us the accelerations
only, and that in order to find the velocities we had to integrate. By
the application of the work-energy theorem we thus save one integra-
tion, because that integration has already been performed once and
for all cases, when the theorem was derived.

A third example is that of the stone whirled overhead at the end of
a string at high speed in a horizontal plane, neglecting gravity (page
211). In this case the only force acting on the particle is the string
tension, which is directed perpendicular to the circular path and
hence does no work. Therefore the kinetic energy of the particle
remains constant, so that it whirls around with constant speed.

The only way in which the string tension mv?/r can be made to do work is
by pulling in on the string, i.e., by making r shorter. Suppose we permit r to
increase by the small amount dr, sufficiently slowly for the string tension to
remain practically constant during the process. Then the work done by the
string force on the particle is —m(v?/r) dr, negative because the particle was
permitted to displace itself in a direction opposite to that of the string force.
By the theorem we have

2
—m%dr =d(—;-mv’ = my dy

or

LS
It
slg

Integrated:
log v = — log r 4 constant
log vr = constant
vr = constant

Therefore if the string is pulled in, the work so performed is transformed into
additional kinetic energy of the whirling particle, which goes faster and faster
the shorter the radius becomes. This case will be discussed from a different
viewpoint on page 280.

The next example is the simple pendulum (Fig. 158, page 184),
which is released from a position ¢, starting from rest. We ask
for the velocity of the particle at the bottom of its path ¢ = 0. The
forces acting on the particle are the string tension and the weight.
The string tension, being always perpendicular to the path, does no
work on the particle. The weight W = mg has a component tangent
to the path and hence it does perform work, but to calculate it we do



254 WORK AND ENERGY

better to consider the whole force mg and multiply it with the in-line
component of displacement. That displacement is partly horizontal
and partly vertical, but W performs work only on the vertical com-
ponent. The work done is mg Ah, where Ah is the vertical descent of
the particle. Thus, if starting from rest (v = T = 0), we have

mg Ah = lLgmy?

The descent Ah = I(1 — cos o), between the extreme position ¢ = ¢,
and the mid-position ¢ = 0, so that

v = /29l(1 — cos ¢s) = \/2g Ah

In this example the velocity was found very simply from the work-energy
theorem. To derive the same result from Newton’s laws directly is much
more complicated, as follows:

We start from the last line of page 184, giving the acceleration

¢=— g sin ¢
To integrate this, we write

Substituting

9=l = 1\12;1(1 — c08 o) = V2gI(1 — o8 po)

Fia. 229. At- The last example to be discussed in this article is
woo d’sma-  Atwood’s machine (Fig. 229), which is a system con-

) sisting of two particles of weight W and W + w, con-
nected by a weightless string slung over a weightless pulley. We
ask the same question as in all previous examples: what i3 the
velocity of the system after a given displacement? 'To apply the
energy theorem to this case we remark that on each particle two
forces are acting: the weight and the string tension. The string ten-
sions on both weights are equal, because the pulley is supposedly mass-
less (page 234), and if the system is displaced, one weight goes up as
much as the other goes down. Therefore the amounts of work done by
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the two string tensions are equal and opposite and their sum is zero.
Applying the theorem to one mass, we find

—Ws + work of string tension = A (% % 02)

and for the other mass, we have similarly

+(W + w)s + work of string tension = A (% w ;’ w vg)

When adding the two equations, the string tension drops out, as

explained before:
ws = A (lwv2)
2 g

or, when &tarting from rest,

v = ,\/2 2 Vs
93w Fw
The parentheses in the square root have been placed there to
indicate the relation between this result and the one obtained on page

191 with Newton’s equations.
Problems 267 and 268.

47. Potential Energy; Efficiency; Power. As we have seen in the
preceeding examples, the forces that may act on a particle arise from
various causes. They can be listed as follows:

. Gravity forces or weights

. Spring forces or other elastic forces

Normal forces from a wall or other guide

. Friction forces

All other forces, such as pull in a rope, steam pressure on a pis-
ton, etc.

o Ao o

It is useful to distinguish between some of these, and in this article we
propose to prove that work done in overcoming the first two kinds of
forces is recoverable and is stored in the form of potential energy;
work done by the third kind is always zero, while work done in over-
coming the fourth kind is not recoverable and is said to be “dissi-
pated” in the form of heat.
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First we consider a body acted upon by its weight and by an upward
force P equal and opposite to the weight, arising, for instance, from a
string (Fig. 230). Suppose the weight to be moved at slow speed from
one position to another one, k higher, by way of any devious path and

==
//! * ’ﬁrB
) -~

P
‘a |2 |
// 2 :
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! |
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F1a. 230. The work done by the string force in bringing the weight from position 4 to
position B along any path is Wh.

to be deposited on a table at the end. The work done by the string
force, which overcomes the weight, is equal to

L] . h h
W=AP(dssma)=[)de=ﬁ) Wdy=Wh=V (20

The work so done is called the potential energy and is usually denoted
by the letter V. The name suggests that this work is not lost to us,
but can be recovered, for instance, by removing the table, and letting
the weight descend slowly while pulling up another equal weight on the
other end of a pulley, or by letting it drop freely through distance &
B A and using the kinetic energy at the end of
| | the fall for a drop-forging operation.

{ ' p Next, let us look at the coil spring of
Fig. 231, which is being compressed slowly
by a force P, overcoming the spring force.

Fio. 231. The work done by  Ag explained before on page 181, the force
a force compressing a spring is . . N .
stored in the form of elastic [P is proportional to the deflection, and if =
energy. is measured from the unstressed condition
of the spring, the force P = kz, when % is the sp/ring stiffness measured
in pounds per inch. The work done by P in compressing the spring
z inches then is

kx?
5 =

x

z z 2
W=/de=/kxdx=k”i
0 0 2

14 (21)
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This is the potential energy stored in a spring, sometimes also called
elastic energy or resilience, and denoted by the same symbol V as the
gravitational potential energy. The work done by P is recoverable
because the spring is ready to push back against the force P and thus
to return the same amount of work to us.

With a friction force (Fig. 232), the situation is entirely different.
Let the body or particle lying on a rough horizontal plane be displaced

IN
| et |
. L -l
"’ )
______ R —
A B

Fra. 232. Work done against a friction force is dissipated in heat.

through distance s by a force P, overcoming the friction force F and
hence equal to it. The work done by P is Ps = Fs, and at the end of
the process, the particle stays where it is and has no tendency whatever
to return to its initial position or to give us any of the work back.
The work is irrecoverable and is said to be ‘“dissipated” in heat.
Gravity forces and spring forces are said to be potential forces, while
friction forces are called dissipative forces. Work done in overcoming
a potential force is like money in the
bank: it is payable on demand; work
done against friction is like money A
dissipated: the bartender will not pay
it back. The term ‘“dissipated” is
sometimes criticized on the grounds
that the work is not destroyed; it is B
only changed into another form, heat
energy. A small part of that heat dx Displacement
energy can be restored to mechanical ~Fio. 233. The area of an engine-
. . . indicator diagram represents the
energy, potential or kinetic, by means ork done during one cycle.
of a complicated heat engine. But
money spent in a bar is not destroyed either; it has only changed
hands, and on rare occasions a small part of it is restored to the former
owner on the morning after.

The difference between a potential force and a dissipative force
can be seen clearly in a force-displacement diagram as in Fig. 233,
where the force acting on a point and the displacement of that point
in the direction of the force are plotted against each other. The

Force
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work done by the force between points 1 and 2 on a small displacement
dz is F dz, represented by the shaded region. If we start with the
force at point A and permit the point to be displaced to B, the work
done by the force is the entire area under the upper branch of the curve.
If we then go back from B to A, and the force during this return dis-
placement is different from the one going from 4 to B, as shown, the

o negative work done from B to 4 is
Y

s the area under the lower branch of
/I{vsei h the curve. Thus the net work done
13, 9 during the round trip 4 to B to 4

]

is represented by the area of the

|
iction 1 . . .
B — = riction B, closed loop. Diagrams like Fig. 233
o ) are very useful as ‘“‘indicator dia-
So Displacement grams’ in engines, where the piston

force is plotted vertically and the

A — B8] piston displacement horizontally.

The piston force, of course, is greater

b e Toredigacomnt e going one way than the other, be-

spring force, and a friction force. cause the object of the engine is to
perform work.

Now let us examine the potential forces of Figs. 230 and 231, and
the dissipative force of Fig. 230 in the light of such an “indicator
diagram.” These diagrams are shown in Fig. 234. The weight force
W is independent of the location or displacement, and is represented
by a horizontal line. Going from A to B back to A in Fig. 232 cor-
responds to going back and forth horizontally along the line A4,B;
in Fig. 234. The work done going up is equal to the negative work
going down: all the work is restored. The spring force kz of Fig. 231
is represented by a straight line through the origin in Fig. 234 and
again the spring force going forward is the same as that going back-
ward, and the round trip ABA in Fig. 231 corresponds to OB,0 in
Fig. 234; again with the negative work during the backstroke equal to
the positive work during the forward stroke.

The friction force in Fig. 232, however, reverses its sign with the
motion, and in Fig. 234 is represented by OA; when going to the
right A;B;, and by OA; = —0A; during the backstroke to the left.
Thus the total work done by force P (Fig. 232) during a round trip
is the area A;BsB;A; in Fig. 234, and since we are back to the starting
position, all this work is disspated. Thus

If a potential force acts on a particle, which is given a round-trip
displacement returning to its original position, the loop area enclosed
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in the force-displacement diagram of Fig. 233 is zero. If the force is
purely dissipative, there will be a loop, and its area above the zero
force line will be equal to that below the zero force line.

Now we are ready to write the rule of page 251 in a few different
forms. We remember that the work done by the force overcoming
the weight or spring force equals the gain in potential energy, and that
thus the work by the weight itself is the negative gain in potential
energy. (A weight going up gains V, but does negative work.)
Therefore we can rewrite the rule of page 251 as follows:

a. The work done on a particle by the external forces, exclusive of
the potential forces, equals the increment in the sum of the potential
and kinetic energies. Or

b. The work done on a particle by the external forces exclusive of
the potential and dissipative forces equals the increment of the sum
of the kinetic and potential energies plus the work dissipated. Or
again

c. If the external forces doing work on a particle are all potential
forces, the total energy of the particle, being the sum of the potential
and kinetic energies, remains constant.

Examples of the last statement are the freely falling stone, the
particle sliding down a frictionless plane, or Atwood’s machine. In
all those cases the total energy remains
constant; the potential energy decreases
and the kinetic energy increases. In the
simple pendulum the energy is all poten-
tial in the extreme positions, all kinetic
in the bottom position, and mixed in be-
tween. As long as no friction oceurs, the
total energy remains constant. Figure
235 shows a simple pendulum OA, which is e 3
impeded in its motion by a fixed pin P. 2

. R oy Fia. 235. A pendulum, re-
The pendulum is shown in four positions, jeased from rest in position 4,
and when it is let go at A from rest, it will ~ will rise to the position B of
ultimately swing out to the position B of :ﬁ: a;h:: ;ght' even if it strikes
equal height with A, because the string
tension does no work and the weight is a potential force, so that the
total energy is constant.

In the example of the rough inclined plane the forces acting are
the normal one, doing no work, the weight, which is a potential force,
and the friction, which is a dissipative one. Applying statement
b above, there are no external forces that do work other than the
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potential and dissipative ones. Thus the total energy is diminished
by the work dissipated. Suppose & = 30°, so that sin o = dh/ds = 14,
and suppose the friction force to be 25 per cent of the weight, then the
work dissipated is half the loss of potential energy; the other half of
the potential energy is transformed to kinetic energy; hence »? is half
as large and v is 0.707 times as large as it would be in the absence of
friction.

Now we are ready to give a satisfactory definition of the term
efficiency, which was used before on pages 88, 91, and 98. In a
mechanical machine, such as a hoist, a certain amount of work is done
by us (the input), with the object of getting most of it back in some
other form (the output). In the process some friction occurs and part
of the work we do is dissipated in friction. The efficiency 7 is defined
as:

_ work output _ work input — work dissipated

"= Work input work input (22)

Power is defined as the rate of doing work; hence it is expressed
in foot-pounds per second or similar units. The usual unit of power
in mechanical engineering is the horsepower (bp), defined by James
Watt to be considerably more than the power of a strong healthy
horse (because James wanted the purchasers of his new fangled engines
to be well satisfied).

1 hp = 33,000 ft-lb/minute = 550 ft-1b/sec (23a)

The unit of power commonly used in electrical engineering is the
kilowatt (kw).
1kw =134 hp (23b)

Since the horsepower or kilowatt signifies work or energy per unit of
time, the horsepower-hour or kilowatt-hour (kkw-hr) represent just
work again:

1 kw-hr = 60 kw-minutes = 60 X 1.34 hp-minutes
= 60 X 1.34 X 33,000 ft-lb = 2,650,000 ft-1b
= 1,325 ft-tons

It is impressive that such an enormous amount of work is available at
any time in our private homes at a cost of 2 or 3 cents.
Problems 269 to 277.

48. Energy of Plane Bodies. Since energy, potential as well as
kinetic, is a scalar quantity, the energy of a large body or system of
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bodies is equal to the sum of the energies of its constituent particles.
To find the potential energy of gravitation of a large body we have
to sum the potential energies of all particles dw, located at various
heights:
V = fzdw = Wzo= mgzs

by Eq. (2) (page 34).

The gravitational potential energy of a two- or three-dimensional
body is the same as that of a particle located at the center of gravity
of the body, in which the entire weight of the body is concentrated, or

Fra. 236. The gravitational potential energy of a body is determined by the vertical
location of its center of gravity.

shorter, the potential energy of a body equals that of its center of
gravity. As an example, Fig. 236 shows a body in three positions of
equal potential energy.

The kinetic energy of a particle dm is 1492 dm, and if a large body
is in a state of parallel motion, having equal velocities in all of its
points, it acts like a single particle, and

The kinetic energy T of a body in parallel, non-rotating motion
is 14me?, equal to the kinetic energy of its center of gravity, or of any
other point of the body having the total mass concentrated in it.

A body rotating at speed » about a fixed axis has a speed rw at
distance r from the axis. The kinetic energy of one particle thus is
14(rw)? dm, and the total kinetic energy of the body is

2
T = /%r’wzdm=%/r’dm=%lowz (24)

The kinetic energy of a body rotating about a fixed axis O, not neces-
sarily its center of gravity, is Y4Lw?. This rule is not restricted to
flat bodies, but applies to three-dimensional ones as well, as follows
from its derivation.

Now we are ready to find the kinetic energy of a body in general
two-dimensional motion. The motion is described as the superposi-
tion of a parallel translation of speed vs of the center of giavity, and
a rotation w around the center of gravity. Choose a coordinate system
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with the origin in the center of gravity and the z axis along the velocity
vg of the center of gravity (Fig. 237). The velocity of any particle dm
then is the vector sum of vs and rw; the angle between those two com-

Yy

Fra. 237. To calculate the kinetic energy of a particle in a translating and rotating
rigid body.

ponent vectors being 90° — a (Fig. 237). Then, by the cosine rule
of triangles, we find for the resultant velocity of particle dm

Vo = 0§ + (rw)? + 2verw cos (90 — a)
= 9% 4 r2w? 4+ 2vewr sin «
vz + r?w? + 2ve0y

The kinetic energy of the entire body then is
T = LJvimdm = Y03 dm + Yw?[r* dm + vew[y dm

By Eq. (2) (page 34) the last integral is zero, because we have taken
the center of gravity for our origin, so that

T = Jgmv} + Ylow? (25)

The kinetic energy of a body is the sum of the kinetic energies of and
about the center of gravity. This rule has just been proved for two-
dimensional motion, but it is true for motion in space as well,

Now we are ready to extend the rule of page 251 from a particle to
a larger rigid body, or to a system of rigid bodies, connected together
by hinges or ropes, by an argument very closely related to that of
page 139. The body, or system of bodies, is thought of as built up
of many particles. On each constituent particle there act such
external forces of the system as may happen to be on that particle
plus the push-pull forces from the neighboring particles. For any
one such particle the rule of page 251 holds, and considering proposi-
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tion 5 of page 250, we can say that the work done by all external and
internal forces on that one particle equals the increment in its kinetic
energy. Now we sum this statement over all the particles of the
system and conclude that the work done by all external and internal
forces of the entire system equals the increment in kinetic energy of
the system.

The internal forces obey the law of action equals reaction, so that
for any internal force acting on a particle a, there is an equal and
opposite force acting on a neighboring particle b, and if those two
forces do not move with respect to one another, the work done by the
one cancels that of the other. For a single rigid body that is always
the case, and it is also the case for systems of rigid bodies where there
is no friction in the hinges and where there is no stretch in the ropes
or springs holding the rigid bodies together (page 141).

Thus we come to the general rule:

The work done by all external forces on a rigid body or on a system
of rigid bodies without friction in their internal connections equals the
increment in the kinetic energy of the system.

A special case of this rule occurs when the system is in equilibrium:
no motion takes place by itself and a small imaginary displacement
imposed from the outside will create no kinetic energy: the work is
then zero, which fact is the foundation for the method of work in
statics (Chap. VIII).

An important special case of the above theorem, corresponding to
the statement ¢ of page 259 is

If all external forces doing work on a single rigid body (or on a
system of rigid bodies without internal friction and without elasticity
in their joints) are potential forces, then the total energy of the system,
being the sum of the potential and kinetic energies, remains constant.

This theorem applies particularly to systems moving under the
influence of gravity without friction in their guides, such as multiple
compound pendulums, e¢ylinders rolling down inclines, and systems of
frictionless pulleys.

If there is friction between the various rigid parts of a system, for
instance, when a cylinder partly rolls and partly slips over an inclined
or curved track, then the rule is

The work done by all external forces on a system of rigid bodies
equals the increment in kinetic energy in the system plus the work
dissipated in friction in the joints or connections.

We will now illustrate these theorems on a number of examples.

Problems 278 and 279.
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49, Applications. The foregoing theories will be applied to six
problems:

. A rolling cylinder

. The compound pendulum
. A system of pulleys

. The sliding ladder

. A dynamometer

. An engine flywheel

o o OR

a. A Rolling Cylinder. The problem of the cylinder of mass m,
radius 7, and moment of inertia I, rolling down an incline « was
discussed on page 242 (Fig. 219) by means of Newton’s equations.
With the energy method the solution is obtained with less effort.
We note that the normal force N does no work. Neither does the
friction force F perform work, because we have assumed no slipping.
The only force doing work is the weight, and its work is transformed
into kinetic energy. Let the cylinder roll down a distance s along the
plane, starting from rest. The work done by the weight (or the loss
in potential energy V) is Ws sin . Let the velocity of the center of
the cylinder at the end of the path s be ». Then the angular speed
w = v/r, if there is no slipping. Thus the kinetic energy, by Eq.
(25), is

o1 1. 92 .
T = Emv2 + §I01"—2 = Wssin «
But W = myg, and for Iy we can write mk2. Thus

k2 .
v? + 7‘2302 = 2¢s sin a

or

g sin «

2 =
v _21_+k2/r28

This formula relates the velocity » to the distance s traveled down the
incline. The formula is seen to be of the form ¥? = 2gh, indicating
that the motion is a uniformly accelerated one with the acceleration
g sin a/(1 4+ k*/r?). This result was found previously on page 242.

b. The Compound Pendulum. Let the compound pendulum of
Fig. 212 be released from position ¢, without initial angular speed.
What is the angular speed at the bottom position ¢ = 0? We note
that the question is worded like all the others in this chapter: what is
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the velocity for a given displacement? A question of this type is usually
answered in the simplest manner by the energy method.

Of the two forces acting on the pendulum, one, the axis support,
does no work, while the other one, the weight, is a potential force.
Hence the sum of the potential and kinetic energies is constant. The
loss in potential energy is

AV = W Ak = mga(l — cos ¢o)
We set this equal to the gain in kinetic energy by Eq. (24).

mga(l — cos @) = ¥lw? = ¥m(ki + o?)w?
and
ga

wz_—_zm(l — €08 @q)

For reasonably small angles ¢o, we may write

2 ’, .,
os o =1- g - w

and the result is

X
@ Al
©~ e\EFa

c. A System of Pulleys. In Fig. 238 we
have a system of three equal weights W, two x
of which are in the form of uniform pulley
disks of radius r. Starting from rest, what f;;’;leffﬁ;mf (:)f c:l csl;}:::mtl;?
is the velocity of the system after a given :K:eﬁggsm:‘:gog weight by
descent 2? What is the acceleration? )

The only force doing work is gravity. If the weight goes down
distance z, then the floating pulley goes up distance x/2. The fixed
pulley rotates through angle z/r and the floating pulley through xz/2r.
The loss in potential energy is

Wz (for the weight) — W % (for the pulley) = LL:

The gain in kinetic energy of the weight is 14mv?; that of the fixed
pulley is 141v%/7%, and of the floating pulley, 14m(v/2)? 4+ 281s(v/2r)2.
Therefore

Wz 5 5, v?
5 —gmttglen
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By Eq. (14) we have I'¢ = mr?/2; further W = my, so that

8 4
v? =T5gx=2(T—5-g)x

The latter answer is in the form »2 = 2gk for the freely falling body,
and we conclude that the acceleration of the descending weight (of
which the displacement is z) is 4{5g. The acceleration of the floating
pulley then is 2{5g upward.

These answers have been found without calculating the tensile
forces in the various sections of rope. If Newton’s equations had been
used, as in Problem 256, the three rope tensions would have appeared
as unknowns and the solution would have been much more cumber-
some. If we want to know the rope tensions, we can still find them
y easily after the energy analysis. Knowing
that the weight acceleration is 4{5g, the
force moving the weight must be 4{5W,
and hence the rope above the weight must
hold back with a force 13{sW.

d. The Slkiding Ladder. Figure 239
shows a sliding ladder without friction any-
where. Starting from the upright position
¢ = 90° at zero speed, what is the angular
speed ¢ of the ladder and what is the ve-
locity of the bottom point B as a function
F16. 239. The problem of the of 7
sliding ladder. The normal forces at A and B do no
work and there is no friction. Hence the only force doing work is the
weight. The loss in potential energy is the loss in V of the center of
gravity (page 261 and Fig. 236) or

A

I 1. .
AV=W(§——2—sm¢>=-ngl(l—smcp)

The kinetic energy is that of and about G. The velocity of G is found
easily after we recognize from the figure that OG is a constant length I/2
and that therefore G describes a circle about O as center with a speed
¢l/2. Hence

AT = (“’l + Iw

1

2™

m_z 1
=g ¢ +(ml2)

mi2p?

c'm—a
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Equating this to the loss in V leads to

o=t 21— sing)

This expression contains a + ambiguity, which is due to the fact that
the kinetic energy depends on ¢? only and is equally large for a ladder
sliding uphill or downhill. Here we know that it must be sliding down-
hill so that ¢ must be negative. The + sign before the square root,
signifying uphill rotation, must be discarded. This then answers the
first question. For the second question we see that OB = zz = 1 cos ¢.
Hence

iz = —lsin ¢ ¢ = v/3gl sin¥p(1 — sin ¢)

an expression which is zero for ¢ = 90° and also for ¢ = 0, as it should
be. What is the velocity of point A at position ¢ = 0?

e. A Dynamometer. A dynamometer is a device for measuring
either forces or torques. Figure 240 shows one form of it, consisting
of two half rings lined on the in-
side with brake lining, loosely ': “““““ {mmmmmee >
clamped around a rotating shaft =Yz """
or wheel. When no weight W is = s
placed in the pan at the end of the 9@7 T ay W2
arm, the friction torque of the

shaft turns the arm so that it Fia. 240. From a measurement of the

. weight W and of the speed of the engine
rests a’ga'lnSt the upper StOp S. the horsepower can be calculated.

When too large a weight is placed
at W, the arm will rest on the lower stop, and for a certain definite
value of W, it will play between the two stops. Given the horsepower
HP of the engine, which is dissipated in the dynamometer, the speed N
of the shaft expressed in rpm, the arm length ! and the arm weight w,
find the necessary weight W.

The moment equilibrium of the half rings and arm demands that
Wi + (wl/2) equals the engine torque. If that torque is M, then the
work M, per revolution is M2r, and the work per minute ig

2rNM, = 33,000 HP

by Eq. (23a). Thus

For a 60-hp engine at 1,200 rpm, the torque M; = 262 ft-Ib. With
an arm length ! = 3 ft and an arm weight of 20 Ib, the moment of the
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arm itself is 30 ft-lb, so that a 232-ft-lb torque is to be carried by the
end weight W. Therefore W = 233 ft-1b/3 ft = 78 Ib.

f. An Engine Flywheel. A flywheel on an engine serves the purpose
of keeping the speed of the engine more or less constant when the
torque applied to it is subject to variations. A gasoline engine has

large torque variations: shortly

1.80 - ff_m/ufi”_-j after a cylinder sparks, the torque

\ is large; midway between explo-

é’q 00 ! F B sions, some cylind(?r 18 comprgssing
5 gas and the torqueis small. Figure
= 241 shows the approximate torque
0.20 curve for a four-cylinder four-cycle

Time spark-plug engine. The torque
Fia. 241. The torque curve of a four- vygriations are 80 per cent of the
eylinder, four-cycle spark-plug engine. .
mean torque, and occur twice per
revolution, with explosion frequency. The torque is approximately
represented by

M, = Minan (1 + 0.80 sin 115 Nt)

where N is the rpm of the engine, and ¢ is measured in seconds. The
reader should verify this by observing that for { = 1 sec the angle of
the sine is *N/15 = 4xrN /60 or 4x times the revolutions. Let this
engine be coupled to an electric generator of which the counter torque
is ccnstant = M,pen. Then the torque variations will cause speed
variations.

For a 60-hp engine running at 1,200 rpm, we now propose to calcu-
late the required WR? of the flywheel effect if the speed is to be kept
between 1,200 rpm + 1 per cent, s.e., between 1,188 and 1,212 rpm.

To solve this problem, we observe that at point A in Fig. 241
the torque has just been larger than normal so that the speed will be
maximum. Between A and B the electric counter torque is larger
than the engine torque and the unit will slow down, till at B the lowest
speed of 1,188 rpm occurs. The mean speed then will occur midway
between A and B.

Now let us calculate the work done by the excess torque between
time B and the next time A. That work is

fMtoxuu d‘P

The angle between B and A is 34 revolution or /2 radians. The
“gverage height”’ of a sine wave is 2/x times its peak height, which the
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reader should check by performing the integration. Thus the above
integral is

2
;th(mk)g = Mc:nsess(pm'k? = 0.8M¢m

This work is used to increase the kinetic energy of the engine, genera-
tor, and flywheel, or

A% vomsined?) = Tombinadss B> = 0.8M ymeun

Therefore
0.8M ¢ mean

Toombinea =
oom w Aw

In this formula the numerical values are

33,000HP _ 33,000 X 60

Minen = %N = Zr X 1,200 263 ft-1b
0 = l—g%) 2r = 126 radians/sec
Aw = 29, of w = 2.52 radians/sec
Hence:
= 08 X 263 _ 4,662 Ib-ft-sec?

Teomsines = 755 X 2.52
= 7.95 1b-in.-sec?

This is the required moment of inertia of the combined engine-gen-
erator-flywheel. To get a picture of what this represents, let us calcu-
late the diameter of a solid steel disk of 1-1n thickness having this
combined moment of inertia:

1w, 1(028 .\, s
I= 27" =3 (—386 T ) r? = 0.00114r* Ib-in.-sec?
Hence
7.95 .
= m = 6,950 ln.‘I
and

r = 9.1in. or d = 18.2in.
Problems 280 to 288.



CHAPTER XV
IMPULSE AND MOMENTUM

60. Linear Momentum. Let us consider once more the simplest
case of particle motion, that of a force F acting on a particle in the
same direction as its velocity v. Taking the z axis of coordinates to
coincide with this direction, we can write Newton’s equation in a form
slightly different from the one we have used so far:

F =ms = mdt dt() t("w)

The quantity mv is called the momentum of the particle, or sometimes
also the “linear’” momentum, to distinguish it from ‘‘angular”
momentum, which will be introduced on page 276. In words Newton’s
law states that the force equals the rate of change of linear momen-
tum, Integrating with respect to time leads to

‘:'F dt = /;2 d(mv) = my; — my, = A(mv)

The integral expression at the left is called the ¢mpulse (or linear
impulse) and it is measured in pound-seconds.
The linear impulse equals the increment in linear momentum,
Since the impulse is measured in pound-seconds, so must be the
momentum, which is verified as follows:
w Ib
m=grv= [m /sec? X sec
The equation so far has been stated only for the case that the
direction of the forece coincides with that of the velocity of the particle.
We now investigate the more general case where these two directions
are not the same. This is illustrated in Fig. 242 in two dimensions
only, but our reasoning will be in three dimensions. Newton’s law
states that the acceleration of a particle has the same direction as
the force acting on it, and this fact can also be expressed by resolving
both the force and the acceleration into three Cartesian coordinates
[Eq. (7), page 176]. These equations, written in the new form, are
270

] = [lb-sec]
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d
F, = 7 (mv,)
d
Fy =5 (mo,) (26)
d
F, = 7 (mw,)

or, rolled together into a single vector equation,

d
F= 7 (mv) (26)
and
/ledt = mv, — mv;

Force F and velocity v are vector quantities. Impulse is the vector
force multiplied by the scalar time; so is momentum the vector v

Yy

o x
F1a. 242. The vector QQ’, being the increment of the momentum vector PQ, has the
same direction as the force F acting on the particle P.

multiplied by the scalar m. Hence both impulse and momentum are
vector quantities that can be resolved into components or compounded
into a resultant just like force or velocity.

In Fig. 242 the vector PQ is the momentum mv, having the direction
of the instantaneous velocity v at time £ = 0. The vector QQ’,
parallel to the force F, is the increment in momentum m Av = F Af.
The vector PQ’ represents the momentum at time At and is the vector
sum of mv and m Av.

It is important to note that while impulse and momentum are
vector quantities, energy is not. The kinetic energy of a moving
particle does not have the direction of the velocity; it is a scalar, a
niumber equal to 14me?, not having any direction at all.

So far we have seen nothing new. The importance of the concept
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of momentum lies in its applications to larger bodies and systems of
bodies. We therefore now proceed to calculate the linear momentum
of a conglomerate of particles moving in space. The linear momentum
of a conglomerate is defined as the vector sum of the linear momenta of
the constituent particles. )

Figure 243 shows three particles mi, ms, ms of different sizes and
velocities lying in the zy plane, but we imagine that there are many

Y m;

/ vz

/ 7

/
’"“,ﬁ‘*,”x, g
vyIT— — Ny,

]

Fia. 243. The momentum of a conglomerate of particles.

z

more such particles in, as well as outside, the zy plane. If the particles
my and m. were part of a rigid body moving in the plane, point P
would be the instantaneous center of rotation of the body (Fig. 171,
page 197), and if particle m; were part of the same body, its velocity v;
would have to be perpendicular to the radius Pm;. The velocity v
is purposely drawn quite differently to indicate that these particles
move like an unconnected swarm in the most arbitrary manner in
three-dimensional space.

Let us first calculate the £ component of the instantaneous loca-
tion of the center of gravity G of this swarm. It is found, by Eq.
(2) (page 34), from

mizy + mexs + ¢ 0 0 MaZn = ZMeTp = TeIM, = Mg

where m denotes the total mass of the swarm. Of course similar
equations hold for the y and z directions. Let us now differentiate
these equations with respect to time. All the z,, y,, 2. vary with time
but the individual masses m, of the particles are constant. Thus

ZMakn = Mg

ZMnln = MYa

Em1_éﬂ = mZ.a
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The left-hand sides are the sums of the z, y, 2 components of momen-
tum of all the individual particles. The right-hand sides can be
interpreted as the three components of momentum of an imaginary
particle having a mass equal to the total mass of the swarm and having
the same velocity as the center of gravity of the swarm. Thus we
have proved that

The linear momentum of any conglomerate of particles equals the
linear momentum of its total mass concentrated at the center of
gravity. Of course the ‘“conglomerate” includes the rigid body as a
special case.

Now we are ready to generalize the statement of page 270 from a
single particle to a swarm (and incidentally to a rigid body or to a
system of interconnected rigid bodies). For each constituent particle
the resultant force acting on it equals the rate of change of its linear
momentum. As always, there are two kinds of forces acting on a
particle: (a) external ones and (b) the pushes or pulls from neighboring
particles, called “‘internal forces.” The internal forces obey Newton’s
law of action equals reaction. Summing Newton’s statement over
all the particles of the swarm, we see that the vector sum of all external
forces acting on all particles plus the vector sum of all internal forces
on all particles equals the rate of change of momentum of the system of
all particles. But, on account of the law of action equals reaction
each internal force is balanced by an equal and opposite one on the
neighboring particle so that their total sum is zero. This leads us to
the result that

The resultant of all external forces acting on a conglomerate of
particles equals the rate of change of momentum of the center of

gravity.
F = gz (mvo) (26a)

This is an important and far-reaching theorem.

Its most spectacular applications are in connection with exploding
bodies. Let a shell fly in a parabolic path, and let it explode in mid-
air. The explosion is brought about by internal forces, whose total
impulse is zero (by action equals reaction); the external force is the
weight, before as well as after the explosion; therefore the center of
gravity of the conglomerate of splinters and combustion gases con-
tinues in its parabolic path. The truth of this can be visualized
easily for an explosion breaking the shell into two equal parts, flying
away in opposite directions, one to the right, one to the left of the



274 IMPULSE AND MOMENTUM

parabola, but the theorem is true no matter into how many parts the
projectile breaks up.

A similar situation exists with an athlete diving off a high spring-
board. The center of gravity of the diver’s body describes exactly
a parabola, irrespective of the twists and turns and somersaults he
may make in the meantime. All these contortions are brought about
by internal forces; while the only possibility of deviating the center
of gravity from its parabola lies in an external force, other than the
weight, of which the only conceivable one, that from the surrounding
air, is altogether too small to be effective.

Another application of the theorem is in the recoil of guns. Let
the loaded gun be at rest with horizontal bore and free to roll on wheels
in the direction of its bore. The firing explosion creates a large force
pushing forward on the projectile and pushing back equally hard on
the gun. By Eq. (26a) the momentum of the combination remains
zero, because there is no external force. Hence, when the projectile
leaves the gun, the combined center of gravity is still at rest and the
velocities of the projectile and the gun must be inversely proportional
to their masses. The gun recoils, and this recoil motion is taken up
by springs and friction, and its kinetic energy is dissipated in friction.
Another way of expressing the situation is that the momentum m,V
of the projectile is equal and opposite to the momentum of the gun
mgy, so that v/V = m,/m,, the total momentum being zero all the
time. What happens to the kinetic energy? That was obviously
zero before the firing and no longer zero after the firing, because we
remember from page 251 that kinetic energy (unlike momentum) is a
scalar and is always positive. The energies of the projectile and of
the gun must be added to give the system energy. Is the energy of
the projectile equal to that of the gun, or if not equal, which is the
larger energy? We have

Ty = 24mpV? = 15V(m,V)
Ty = }amgp? = Y4v(myv)

The two quantities in parentheses are the momenta, which are equal,
so that the kinetic energies are in ratio of the velocities, or in inverse
ratio of the masses, which is lucky because the enemy will have greater
difficulty in stopping the projectile than we have in taking the recoil
of the gun.

A device that was often used for determining the velocity of a bullet
(before the days of high-speed cameras or oscillographs) is the ballistic
pendulum, shown in Fig. 244. It consists of a bag of sand of weight
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W suspended from a string of length I. The bullet of weight w is
fired into the sand at the unknown speed V,
and the pendulum swings out to an angle «, \
which is observed. From e« it is possible 2
to determine the bullet speed V. \

Just before striking, the momentum of \
the system is wV /g, and during the period AW 7
of embedding of the bullet into the sand- 5\,«‘-3——,5.-
bag no external forces act, because it all = =w=—F
takes place in so short a time that the g, 244. With the ballistic
pendulum remains vertical. Then the sys- pendulum the velocity V of a

. : bullet can be measured.

tem momentum remains constant during
the impact, and the sandbag-bullet combination acquires a speed v so

that

W+wv=1i)V
g g
or
w
v——W+wV

Immediately after the impact the pendulum swings out and comes to
rest at angle a. The calculation of a from the initial speed v is a
typical question for an energy analysis rather than for a momentum
analysis, because it expresses a relation between velocity and displace-
ment, rather than between velocity and time.

1W+w
2 g9

v = (W + w)h or v? = 2gh

and by geometry
h=1l(1—cos a)

V=W+wv=W;)*_wv2gl(1—c03a)

w

so that

is the desired relation between the bullet velocity V and the angle of
swing o.

In the example of Fig. 245 many of the foregoing effects are com-
bined. A man in a closed boxcar (without friction in the wheel axles)
shoots a bullet into a target at the other end. The reader should
reason out for himself what happens during the three stages of the
process: first while the bullet is traveling inside the gun barrel, then
while it is in the air, and finally while it is embedding itself in the
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target. It is instructive to do this with the momentum theorem
[Eq. (26a)] as well as with Newton’s laws directly. The conclusion is
that the combined center of gravity never moves, that while the bullet
is in flight the car rolls back slowly, that at the end the car is stopped

Fr6. 245. Linear momentum relations in the problem of the man firing a bullet inside
8 closed car,

again and is slightly behind its first position. During the flight of
the bullet its forward momentum equals the rearward momentum
of the car, but the bullet’s kinetic energy is very much greater than
that of the car.

Problems 289 to 293.

51. Angular Momentum. The moment of a force about an axis,
oblique in space with respect to the line of action of the force, is found
by first resolving the force into two components, one parallel to the
moment axis and the other one in a plane perpendicular to that axis,
then multiplying the latter component with the normal distance
between its line of action and the moment axis (page 103). The
component of force parallel to the moment axis has no moment about
that axis. In the same manner we can form a moment about an axis
of any other vector quantity instead of force. We could take the
moment of a displacement, velocity, or acceleration, but such moments
have never been found of much use. However, the moment of the
momentum vector about an axis is of great utility and is denoted by
the letter on.

The unfamiliar Gothic 9 is used for moment of momentum, M is used for
moment, and m for mass. Unfortunately, too many words in mechanics start
with the letter m.

For a rigid body rotating about a fixed axis O at angular speed w,
a particle dm at radius r has a speed rw and a momentum rw dm per-
pendicular to the axis of rotation. The moment of this momentum,
also called the angular momentum of the particle is r ro dm = r’w dm,
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and the angular momentum of the entire body is the integral of that
expression or is wlo. Newton’s law for the rotation of a rigid body
about a fixed axis was [Eq. (15), page 233]

d
dt

d dan
=% {ow) = i (27a)

M=1 o(b =7 o
or in words

The moment of all external forces acting on a rigid body pivoted
about an axis fixed in space equals the rate of change of angular
momentum /w about that axis.

The next case we consider is that of the general two-dimensional
motion of a body. The velocity of such a body can be considered
(Fig. 169, page 196) as the superposition of a parallel motion and a
rotation. The angular momentum of the parallel motion about the
center of gravity is zero, by the definition of center of gravity. (By
page 33 it is the point through which passes the resultant of a set of
parallel “forces” proportional to the masses dm, or the point about
which those parallel ““forces’’ have no moments. Instead of “forces”
g dm we have here quantities v dm of the same nature.) Therefore
the angular momentum about @ is due to the rotational motion only
and is Jsw. With the help of this we can rewrite Newton’s equations
[Egs. (17)] of page 241 as follows:

d .
F z = a—t (mxﬁ‘)

d, .
F, = 3 (mye) (27b)
Mo = %(zw)

or in words

For the plane motion of a rigid body the resultant of all external
forces equals the rate of change of the linear momentum of the center
of gravity G, and the moment of the external forces about G equals the
rate of change of angular momentum about G.

These are very useful theorems, but they tell us nothing new;
they are the old equations (17) of Newton’s law, stated in terms of
new words. However, the concept of angular momentum owes its
great significance in mechanics not so much to applications to single
rigid bodies, but rather to composite systems, such as precessing gyro-
scopes or rotating and oscillating governor flyballs, for which the new
theory is very useful. With the goal of a gyroscope theory in view,
Wwe now return once more to a single particle, having not only a tan-
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gential speed about the moment axis, but having radial and longi-
tudinal speed components as well, and subjected to a force likewise
having all three components. For such a particle we shall prove that

The moment about an arbitrary line fixed in space of the force
acting on a particle equals the rate of change of the angular momentum
of that particle about that axis, or M, = don/dt.

This proposition is very important and is by no means as obvious
as it might seem at first reading. For its proof we start without a
figure but imagine the moment axis in space and the particle not on
that axis with an arbitrary velocity vector and an arbitrary force
vector in different directions. We resolve the velocity as well as the

(7]
F1a. 246. To prove that the moment of a force acting on a particle about a line in
space equals the time rate of change of angular momentum of the particle about that
line.

force into components parallel to the moment axis and in a plane
perpendicular to that axis. The parallel (longitudinal) components
of force or velocity have no moment about the axis. By Newton’s
law a force along the axis will change the particle velocity only in that
direction, but the perpendicular velocity component is not affected
by it. Therefore, in our derivation of the moment relations we can
disregard the longitudinal components of force and velocity (or
momentum) and deal with the perpendicular components only. Now
we are ready to draw a figure. Figure 246 is the plane perpendicular
to the moment axis, which appears as a point O only. The particle
P has a momentum mv and the force F is acting on it. We resolve the
force as well as the momentum into radial and tangential components,
as shown in the figure. By Varignon’s theorem (page 103), the
moment of a vector about an axis is the sum of the moments of its
components. But the radial components, F, or mv,, have zero moment
about 0, so that the moments of ¥ and mv are equal to those of F, and
mv,, respectively. With this the problem is reduced to rotation about
a fixed axis, for which it is expressed by Newton’s law F, = d{mv,)/dt.
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in which both sides of the equation are multiplied by the common
moment arm OP of Fig. 246.

Another proof of the theorem is by resolution into Cartesian coordinates
F., F,, F. my., my,, and my, as shown in Fig. 247. The coordinate system has
been so chosen that the z axis coincides
with the moment axis. z 7

The moment of the total force about “
the z axis is, by geometry,

17
Mp=Fuz—Fy p/

2
which by Newton’s law is

mjz — miy = mjz — By) /
The moment of the momentum vector Y

about the z axis is, like the moment of
the force,

Fia. 247,

M = mv,z — mvy = m(yz — zy)

Then, by differentiation:
a9

Tdt

m{(Gz — ) — Gy — 2y))

m(jz — Zy)

which is the same as the expression for the moment of the force M/, so that
the theorem is proved. In this proof Varignon’s theorem has been freely used

although it was not mentioned. The reader is advised to point out where in
the proof this was done.

The simplest and most beautiful application of this angular-
momentum theorem of a particle is to a problem in astronomy, to
Kepler’s law of equal areas in equal times. In Fig. 248 let S be the

P, sun and P, and P, be two positions of

a planet moving around the sun (we
do not have to know that the path is
an ellipse). Newton assumed that
the sun and planet, both considered
S to be particles, attract each other

with a force along their connecting

line. The attractive force on the

F1a. 248. A planet in its path around planet has no moment about S’ and
the sun sweeps out equal areas in hence d91t/d¢ is zero, or 9N, the an-
equal times. gular momentum, is constant. On
page 14 we saw that a moment can be represented by twice the area of
the shaded triangle, erected on the mv vector as a base. If we multiply

)
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the mv vector by a small time At so that the base is short, then all the tri-
angles for equal times At must have equal areas. For longer times ¢ the
base of the figure becomes curved, and the figure can be considered as the
sum or integral of many small triangles. Hence equal areas are swept
out in equal times, and the velocity is larger when the planet gets closer
to the sun. This law was deduced by Kepler (1571-1630) from num-
erous experimental observations on the planets, and its explanation
by Newton (1642~1727) on the basis of his own laws of motion was the
first important confirmation for the correctness of those laws.

Now we are ready to return to the problem discussed on page 253
where a particle is moving on a horizontal smooth table under the
influence of a string that pulls it. This is exactly the same as the
planetary problem, and we can write immediately

M = rre = r% = constant

a result which was found much more elaborately on page 253.

Our next step is to extend the theorem of page 278 from a single
particle to a conglomerate of particles. We follow the same reasoning
as in all such cases. Each particle of the swarm is subjected not only
to an external force, but to internal forces from its neighbors as well.
By action equals reaction the momenta caused by these internal forces
cancel each other in pairs, so that the total momentum and hence the
moment of momentum caused by the internal forces is zero.
Therefore

The vector sum of the moments of all external forces acting on a
conglomerate of particles about an arbitrary axis fixed in space equals
the rate of change of the angular momentum of that conglomerate
about the axis.

This statement is identical with that of page 277 if the conglomer-
ate is a rigid body, but we have now proved it to be true for a non-rigid
body as well. In the general case of a swarm of particles, all moving
independently of each other, the angular momentum can be found
only by summation. In case the relative motion of the individual
particles is radial only, the angular speed w is the same for all particles
and the formula 9 = Jw applies, but now I is not a constant, but
varies with the time. Thus the theorem furnishes the explanation
for the familiar experiment in physics (Fig. 249), where a man stands
on a rotating platform without external forces. The angular momen-
tum about the vertical axis must remain constant, and if the man’s
internal motions consists of radial displacements of his arms only,
this can be expressed by
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dm _ d(lw) _

di di
in which 7 is variable. The product of I and w is constant, so that
w increases when the man pulls his arms together. This is a trick
commonly practiced by figure skaters or ballet dancers to increase
their vertical angular speed at will in the movement known as the
“pirouette.”

If the man on the rotatable platform starts without angular speed
and does not push against anything outside the system (including the
surrounding air), he cannot acquire perma-
nent angular speed by whatever contortions
he might make. He can make the platform
rotate by swinging a stick or his arms con-
tinuously above his head in a horizontal
circle, but as soon as he stops that motion,
the platform stops rotating. If he happens
to have a bicycle wheel with a couple of
handles on its axle, he ¢an acquire an angu-
lar speed starting from rest by holding the
wheel in a horizontal plane and then start~ g 249 Tho system of the
ing it spinning by hand. The total angular man and the frictionless
momentum about a vertical axis must re- Z‘:;fli?lemgﬁ;’&;hi%ﬁt’t:
main zero, so that if the wheel spins clock-  vertical axis by motions of the
wise, he himself spins counterclockwise. ™" arms.

If, while this is going on he turns the wheel upside down, while spin-
ning, his own angular speed will be reversed. But when he stops the
wheel, he will stop rotating himself.

Problems 294 to 297.

62. Applications. Work is force times distance; impulse is force
multiplied by time. When the velocity of a system is asked after a
certain distance, we do well to use the work-energy theorem. Simi-
larly, when the velocity after a certain time is wanted, we use the
impulse-momentum theorem.

The following problems will be discussed:

0

The block sliding down an incline
The cylinder rolling down an incline
Mixed sliding and rolling

. The water jet against a flat wall

. The Pelton water turbine

. Reaching the moon with a rocket

e Rp P
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a. The Sliding Block. A block slides down an incline «. What is
the speed after a given time ¢ from the start? If thereis no friction, the
force in the direction of the incline is W sin «, constant in time,
Equating the impulse to the increment in momentum, we write

(W sin a)t = my
or
v = (g sin a)t

which is the desired relation. In case there is friction, the retarding
friction force is fN = fW cos «, so that
the net force down the incline is W(sin
a — f cos a). The analysis is the same
and the answer is

v = gi(sin a — f cos a)

b. The Rolling Cylinder. What is the
Fra. 250, To find the velooity speed of a cylinder rolling c-lown an incline
after & ocertain fime for a ¢ at a time ¢ after starting from rest?
cylinder rolling down a rough  From Fig. 250 we see that the net force
incline. down the incline is W sin @ — F, in which
F is not known, except that it must be smaller than fW cos a. We
apply Egs. (27b) along the plane and about the center of gravity:

(mg sin a — F)t = mv

Fri = Iew = -I—;'i) (for pure rolling)

In this pair of equations there are two unknowns, F and ¢. Eliminat-
ing F and solving for ¢, we find

y = g sin o
T 1+ Ie/mr?

verifying the result obtained on page 242. In this general form the
solution holds for solid or hollow cylinders, spheres, or yo-yo wheels
like that of Fig. 221 (page 243), all depending on the value we sub-
stitute for Ie.

¢. Mized Sliding and Rolling. A billiard ball is given a central kick
by the cue. We shall see on page 288 that this results in a parallel
velocity vy of the ball without rotation. During the first part of the
path (Fig. 251), slipping takes place and the friction force starts a
rotation, which after a while becomes so large that the slip stops and
the ball is purely rolling. After what time ¢; does this occur?
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The only forces acting on the ball are the weight W, the normal
force (also equal to W), and the friction force, which equals fN during
the time interval 0 < ¢t < #;. The equations [Egs. (27b)] are

th1 = m(vo bt 1)1)
Nty = Togn

At the time ¢, pure rolling has set in, so that

¥ = w1
e
e B
\\f// \\ @“r
) 2+¢

Fia. 251. A billiard ball starting at time ¢ = 0 with parallel sliding motion gradually
comes to a purely rolling motion at ¢ = £,

In these three equations ¢;, w1, and v, are unknown, so that we can solve ,
for them:

b= 1 4 Ig/mr?
—_— vl
w1 —-1—'-
Vo

b= AT T

which solves the problem.

d. The Water Jet. A jet of water of cross section A and speed v
strikes a flat plate (Fig. 252), which has a
cone-shaped guide attached to it, so that l”
the water stream spreads out evenly in all
directions. What is the force exerted on -
the plane by this jet?

The volume of water striking the plate
each second is Aw, and its mass is Avp,
where p is the mass per unit volume, or the —.
density of the water. The water in the jet 4 " 17
before striking the plate has momentum all o xortaor Jot, j;‘zl;j
in one direction, whereas after striking,
the particles have velocities equally distributed in all directions, so
that the momentum is zero. The loss of momentum per second of the
water is

Avpv = Av?p,

and by Eq. (26a), this is associated with a retarding force of that
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magnitude exerted by the plate on the water, and hence by the water
on the plate. Suppose 4 = 1in.2and v = 100 ft/sec. Water weighs

<2 62.4 Ib/cu ft, so that
_6241b/cuft _ i
— P = 322 Tt/sec? 21b sec? ft
o ) The force is
-
Fie. 253. A F = pp?A =2 X (100)2 X Y{44 =139 1b

water jet strik-
ing a Pelton Jf the jet strikes a Pelton wheel bucket, shaped as in
wheel bucket ex- " o . .
ercises a force Kig. 253, so that the velocity is reversed without any
249%. loss in kinetic energy, the momentum is reversed and
the change in momentum is twice that of Fig. 252 or F = 24 pv2.

e. The Pelton Water Turbine. A Pelton wheel consists of a large
number of buckets, each shaped like Fig. 253, arranged on the periph-

ery of a wheel (Fig. 254). Let the speed of the water jet be V.

F1a. 254. In a Pelton wheel two buckets are simultaneously struck by the water jet
during part of the time.

First let us consider a single bucket, moving at velocity ». During
each second a length V' — v of water strikes it, with a relative velocity
V — v. If the bucket is well constructed, this water reverses its speed
and leaves the bucket, with a reverse speed V — v relative to the
bucket. The force exerted on the bucket then is

F =24p(V —v)?

Since the bucket moves with speed », the power or work done per
second, W, by the water on the bucket is

2
W, = = V — )2 = Vi— — =
1 Fy 2Am)( v) 2Ap 3 vV (1 V)
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The expression has been written in the last form, because we wish to
investigate how this power varies with the ratio »/V. For v/V = 0,
there is no power, because the bucket does not move; for »/V =1,
no water catches the bucket and the power is again zero. The rela-
tion is plotted in Fig. 255, and the reader should verify by differentia-
tion that the maximum power or rate of work is being delivered if
the bucket moves at one-third jet speed. Then the water strikes

W

24pV? — 427

|
|
|
[
1 1
0 3 | oV

¥1a. 255. The power delivered by a single Pelton bucket as a function of the speed
ratio.

the bucket at two-thirds jet speed, and leaves the bucket at one-third
jet speed in a direction opposite from the original one. It thus
retains one-ninth of its kinetic energy and gives up eight-ninths doing
work on the bucket.

One would expect that if the bucket speed were half the jet speed and
hence the final speed of the water zero, then each drop of water would
give up all of its kinetic energy and hence more work would be done by
it. ‘This is indeed so, but, for v = V /2, less water strikes the bucket
per second than forv = V/3, and the maximum rate of work per bucket
is at v = V /3, as shown in Fig. 255.

Now we return to the multibucket wheel of Fig. 254, and remark
that for each individual bucket the result of Fig. 255 applies. What
is now the power of the wheel? It is more than the power of a single
bucket, because sometimes two buckets receive the water stream simul-
taneously. For example, Fig. 254 shows the instant that the stream
is just beginning to be interrupted by bucket B. During the short
time that follows, bucket B receives the full stream, while bucket 4
is using up the portion BA of the stream simultaneously. The
relative speed of catching up is V — v, and if s is the bucket pitch,
or length of the column AB, the time of double exposure is s/(V — v).
The time of one pitch advance is s/v, so that double exposure occurs
during a fraction of the total time expressed by

s/(V—-9) v
8/v TV -




286 IMPULSE AND MOMENTUM

The power of the wheel thus is the power of a single bucket multiplied
by

v vV _ 1
Sty =7y~ T=ov

or

W, = 2ApV‘I£, (1 - %) (for the complete wheel)
a relation shown in Fig. 256. Now indeed the maximum power occurs
w; at half jet speed, as the reader
Zapvs % should verify by differentiation.
N J. Reaching the Moon with a
} Rocket. Our last topic in this
[ article is a discussion by means
: of the momentum theorem of
i the possibility of sending a
0 ,/'2 o rocket to ths.a mo0n. A roc!(et
F1a. 266. The power delivered by a com- OPer,a'tes by ejecting from behlnd
plete multibucket Pelton wheel as a func- 8t high speed some parts of its
tion of the speed ratio. own substance. In order to im-
part high speed to that expelled material the rocket machinery has
to give it a large rearward acceleration, and hence a large push. By
the fact that action equals reaction, the rocket pushes itself forward
against the inertia of the expelled material. The rocket has only a
definite amount of matter aboard for expelling purposes, and it does
best by ejecting it at the highest possible speed. This ejecting speed
is limited by energy considerations, and the best that can be done by
ordinary chemical combustion or by explosives is about 5,000 ft/sec
or 4}4 times the speed of sound. Any substantially higher ejecting
speeds await the atomic age. Given this jet speed, the rocket push
can be regulated by the rate at which matter is expelled, and the
question comes up as to the best rate for the purpose of getting to
the moon. The answer to that question is simple: the best we can
do is to throw out the total available charge in the shortest possible
time at the start. This can be recognized by observing that if we
should expel matter at such a moderate rate that the upward push
equals the rocket weight only, then the rocket would just hover as
long as it was burning, and would get nowhere. By ejecting the total
charge at the beginning, the maximum possible speed is attained,
which sends the rocket farthest away. The only limitation is the
maximum acceleration the rocket structure can withstand.
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Now we are ready to calculate the maximum speed V of the rocket,
after the available charge has been expelled. Let Vi, be the expelling
speed, mgn the mass of the rocket including fuel at the start, Meumpw
the mass at the end of combustion, and let x be the mass ejected per
second. Then the momentum thrown off during time df is uVie dt,
which is also the gain in forward momentum of the rocket itself. The
mass of the rocket at time ¢ is muu — pf, so that

[J,Vju, dt = (m,.,u bt yt) dV

t 4
Vm/—’ﬂ—=/ av
OWull—”'t 0

13 14
—Vie log, (M — pt) | =V
0 0
M
Vislog. S =V

This is the relation between the variable rocket speed V and the vari-
able time ¢ during the ejection period. But this period only lasts
until Mmen — pt becomes Mempy, SO that

This simple relation must be satisfied irrespective of the internal con-
struction of the rocket.

Now we must calculate what initial speed Vimeo rockes is required to
reach the moon. This is an exercise in integration that is left to the
reader as Problems 299 and 300 (page 430), with the result that the
required speed is 37,000 ft/sec or about 34 times the speed of sound.
With the best available Vi, of 5,000 ft/sec, we find that

log, M _ 37,000 _
08 (e 5,000

Tall g4 = 1,640
Mempry

7.4

Thus, for every pound of rocket structure, machinery, fuel tanks,

instruments, and controls, the rocket must carry 1,639 1b of fuel or

similar ejectable material, which shows that the moon is still far away.
Problems 298 to 303.

53. Impact. When two elastic bodies impinge on one another,
like two billiard balls, a hammer and a piece of steel, or a golf club
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and its ball, it has been found that the contact is of extremely short
duration and the contact force is of very large magnitude. It is
common experience that with a light blow of a peening hammer we
can make a permanent dent in a piece of steel, whereas in order to
make that same dent with static loading we have to put thousands of
pounds on the hammer head. Figure 257 shows a photograph of a
golf ball being hit by a club, from which the enormous magnitude of

Fia. 257. A golf ball being struck by the club. This photograph with an exposure
of 107% sec was taken by Prof. Harold E. Edgerton with one of the marvelous high-
speed cameras he developed.

the contact force is apparent. The duration of contact is of the order
of one-thousandth of a second. With these phenomena Newton’s
laws are true as always, the accelerations are very large, but the time
interval during which the acceleration applies is so small that the
struck body hardly displaces itself. The momentum equation still is

SO dt = m(os — vy

but in the impulse integral we do not care to distinguish the details of
the force-time relationship, considering the “impulse” as a whole only.
In Fig. 258 two impulses are shown, which are entirely equivalent for
our purpose as long as the areas under the curves are the same. These
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two impulses will “instantaneously” change the momentum of the
struck object by the same amount.

Now we propose to study the general case of central impact
between two bodies, and after obtaining the general formulas, we will
interpret the results to various

practical cases. By ‘‘central”

impact we mean that the line of 3000}~

action of the contact force is per- |

pendicular to the contact surface -_3.1 2000}~

and passes through the centers of §

gravity of both bodies. The 1:-61000

masses m; and m; and the veloc-

ities V; and V, before impact are 0 T
known; it is required to calculate L . 0.00!
v, and v, after the impact (Fig. 0.0001sec. Time, sec.

259); All velocities are consid- F. 258, The important property of an
e}'ed positive in 1.:he same direc- ;?flﬁz ; “;? aroa zﬁf‘: g?:elcf‘“l'ﬁé ‘i'ftlﬁ:
tion; the quantities my, mg, Vi, significance.

V. may have arbitrary values,

but V; must be larger than V;, otherwise the two bodies will not meet.
The impact force is an internal force in the system of two masses;
hence the total momentum remains the same under all circumstances,

whether the balls are made of lead or of ivory. Thus
miVi + meVa = mw; -+ mawe (28)

This is only one equation in the two unknowns v, and »,. The second
equation is an energy equation and expresses the difference between
lead and ivory. If a perfectly elastic hard steel ball from a ball bear-
ing is dropped from a certain height on a hard steel plate, the impact
173 ¥  takes place without loss of energy; <.e., in a
force-displacement diagram like Fig. 233 or

234 the forward and return curves lie on

top of each other and do not form a loop.

a p Then the steel ball rises to the same height
Fio. 250, Two balls over. &8 that it fell from, and the velocity of the
taking each other, just before  ball relative tothe plate reverses its direction
impact. during the impact. On the other hand a,
lead ball just stays down and does not bounce at all. With Newton
we define the coefficient of restitution ¢ as the ratio between the rela-
tive speeds after and before impact: for a purely elastic impact ¢ = 1;
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for a purely inelastic one ¢ = 0; all actual cases are in between. This
is expressed by

C(Vl — Vz) = Yg — U1 (280)

which furnishes the second equation for the solution of v; and vo. To
solve for v;, we eliminate v; by multiplying the last equation by m,
and by adding it to Eq. (28), with the resultr

- m2V2 - m16V2 + m1V1(1 + e)
my + mg

miVy — maeVy + meVa(1 + ) 29)
my + me

U2

v =

1t is seen that these two expressions can be found one from the other
simply by reversing the subscripts 1 and 2; which must be so because
neither the momentum equation [Eq. (28)] nor the restitution equa-
tion changes by reversing the subscripts. Two special cases of Eq.
(29) are interesting. The first one is that for purely elastic impact

when ¢ = 1.
(m1 hand mz) V1 + 27n2Vz

= my + me
v, = (1114 - m;)Vz + 2m1V1
: my + my

which for the special case of equal masses m;, = m, reduces to

vn=7V,
Ve = V1

which means that the velocities just reverse. If the front ball stands
still and the rear ball of equal weight strikes it, the rear ball stops dead
and the front ball runs on with the same speed as the rear ball at first.
This can be observed with billiard balls or marbles.

The second interesting special case is inelastic impact: ¢ = 0.
Then Eq. (29) reduces to
Py = vy = miVi + m,V,

my + me

which means that after the impact the two bodies run on with a com-
mon speed. A piece of putty falling on the floor illustrates this case.
The loss or dissipation of energy in the impact can be calculated
from
AT = (4miVi + 2omeV3) — (Ygmwi + Jomavi)

When Eqs. (29) are substituted into this expression, the energy
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loss can be written in terms of the known quantities my, ma, V1, V.
This, however, involves a page of algebra before the expression is
reduced to its simplest form, which is

—_ p2

AT = 158 I (7, — 7y (30)

The reader who has time to spare may verify this, but we will now
derive the result in a simpler manner. We reason that the loss of
energy during the impact does not depend on V; and V' individually,
but rather on their difference V, — V2, because only this difference
determines the intensity of the shock. Adding equal amounts to
V, and V,, which means moving the pair of balls at an additional
uniform speed, should not change the energy loss. Then we choose
V, and V, so as to make the situation as simple as possible, namely,
by setting the combined center of gravity at rest. The two particles
move toward each other, and after the impact the point G still remains
at rest, so that the two particles individually reverse their speeds,
only diminished by the factor e. The center of gravity is at rest when

mVi+ mVe=0
or
V1 = m——l + P (V1 Vz) and Vz m + progy (V1 Vz)
The incoming energy of m: is }4m,V}; the outgoing energy is
14mi(eV1)2. A similar formula holds for the other mass ms. There-
fore
1 —¢?
AT = 3

R me Y my Y

= ) [m1 ()’n——'—_'1 + WL2) + mz (m—l + m2) ] (Vl — I’,)z
_ 1 — e? mime _

o 2 m + ma (VI Vz)z

which is Eq. (30).

We can draw some practical conclusions from these formulas, or
rather we can show that our ancestors who developed hammers,
anvils, and pile drivers by a process of common sense and trial and
error succeeded in adopting dimensions which, by the formulas, prove
to be the most suitable ones. First let us consider the forging opera-
tion where m, is the hammer and m, is the combination of anvil and
forging. The object is to forge, i.e., to transform as great a part as

(maVi + maV3)
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possible of the kinetic energy of the hammer into dissipation by chang-
ing the shape of the forging. In this case, when the forging is suf-
ficiently hot, the restitution coefficient e is very small, practically zero,
so that by Eq. (30), the dissipated energy is

1 mimas 2

This can be written as
ms 1
my + me § le%

or in words, m,/(my 4 m,) times the original energy of the hammer.
In order to dissipate as large a fraction as possible of this energy, we
must make the ratio ma/(m; + m.) as close to unity as possible, which
means that the anvil m,; must be made as
large as possible with respect to the hammer
mi.

The opposite is the case in a pile driver.
There the pile m; takes the place of the
anvil, and the object is to transform the
kinetic energy of the hammer or ram into
kinetic energy of the pile, which then shoots
a few inches further into the ground, chang-
ing its own kinetic energy into work over-
Fra. 260. A compound pen- COMIng side friction from the ground.
dulum subjected to a shock 8  Here, it is of advantage to make the ham-
oo its omreesotion shock 88 per m, large in comparison to the pile m..

Also it is of advantage to make e as large
as possible. The reader should verify from Eq. 29 that for purely
elastic impact, ¢ = 1, the pile acquires four times as much kinetic
energy as it would for inelastic impact e = 0,

We now turn to an entirely different problem, illustrated in Fig.
260. A compound pendulum, suspended at O at rest, is given a sudden
impulse or shock S at distance b below point G, and directed per-
pendicular to OG. What does the pivot axle at O feel? The shock
8 = [F dt consists of a very large force during a very short time, as
explained in Fig. 258; hence if O feels anything at all, it must also be
a shock. Assume that reaction shock to be Sz, directed parallel to S.
(We can reason that there cannot be a reaction shock component along
OG, because that would impart a velocity along OG to the body, which
is impossible). We write three equations
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S—-Sn=mvg
Sb+Sxa=Iaw
Vg = Gw

The first two of these are the integrated Newton equations [Eqs.(17)
of page 241]; the third equation is a geometric one expressing that point
0 is fixed. These three equations contain the three unknowns v, w,
and Sz. The quantities vs and w are the velocities of the system
immediately after the shock. Eliminating them and solving for the
reaction shock Sz, we find :

Io — mab _ (ki — ab

Se= 87T =S

We see that the reaction shock is zero if ki = ab, that is, when the
shock S is given in the center of percussion (page 247) with respect
to the point of suspension O.

Problems 304 to 306.



CHAPTER XVI
RELATIVE MOTION

64. Introduction. In all previous statements in this book about
displacements, velocities, or accelerations, these quantities were
expressed in terms of a coordinate system ‘‘at rest.” By that we
tacitly meant that the coordinate system is at rest with respect to
what Newton called ‘““‘absolute space,” which is the space of the
“fixed” stars. Newton’s law of the proportionality of force and
acceleration is found to agree very well with experiment when the
acceleration ig referred to a coordinate system ‘‘at rest in absolute
space.”” The earth rotates with respect to that absolute space, so
that a coordinate system fixed to our earthly surroundings is not
strictly at rest, and Newton’s laws do not apply quite as well, but for
almost all our engineering applications we can say that an earthly
coordinate system is sufficiently close to being “at rest.” Only for
a few devices, of which the gyroscopic ship’s compass is the most not-
able one, does the rotation of the earth become of engineering interest.

In many practical cases a motion can be described more simply in
terms of a moving coordinate system than in terms of an absolute one
or an earthly one. Take for example the motion of a point on the
periphery of a rolling wheel (Fig. 151, page 173). The path of that
point is a ¢ycloid, and the determination of the velocity and accelera-
tion is complicated. If, however, we set up a coordinate system with
the origin in the wheel center, moving with it, and with the z axis
horizontal and the y axis vertical, then the path of a peripheral point
becomes a circle, and its velocity and acceleration appear very much
simpler. Or consider a Watt flyball engine governor (Fig. 166, page
193), of which the balls oscillate up and down while rotating. The
actual path in space of a ball is very complicated, and the accelera-
tions are difficult to determine. We are very much tempted to place
ourselves as observers on the rotating governor spindle and describe
the ball motion with respect to the rotating coordinate system. The
motion is then a simple up and down oscillation, and the acceleration
is easily found. However this acceleration relative to the rotating

system 1is different from that relative to the surroundings at rest,
294
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and only the latter acceleration equals F/m. Newton’s law is true
for coordinate systems at rest; in general it does not hold for moving
coordinate systems.

The science of mechanics did not start with engineering, but with
astronomy, and naturally the ancient astronomers described their
observations in terms of a coordinate system of which the earth was
the origin. The paths they found for the planets were awful, hypo-
and epicycloids, and it was a great accomplishment when Copernicus

21z

1

S hore
Fia. 261. The absolute velocity is the vector sum of the relative velocity and the
vehicle velocity.
(1473-1543) and Kepler (1571-1630) recognized that these paths
could be described more simply as ellipses in terms of a coordinate
system with the sun as origin. This discovery was one of the starting
points for Newton’s great work.

In engineering there are many cases where motions with respect to
a rotating coordinate system are simpler than those with respect to
absolute or terrestrial space. In the counterweights of aircraft
engines there are loose pendulous masses, whose motion in absolute
space is very complicated indeed, but which only oscillate with respect
to a moving coordinate system attached to the crankshaft. The
motion of fluid or gas particles in the blades and passages of turbines
or rotating pumps are other examples of this kind.

Thus we recognize the desirability of finding out what we have to
do in order to make Newton’s laws applicable to moving coordinate
systems, and that is the object of this chapter. We shall make no
change in Newton’s law itself, but we shall find rules by which the
actual or absolute acceleration can be deduced from the simpler
relative acceleration with respect to the moving coordinate system.

Some of the rules of relative motion are extremely simple, almost
obvious, and they have been applied here and there in the previous
pages already. Consider, for example, Fig. 261, where a ship moves
with respect to the shore, which, being at rest, is an absolute coordinate
system. The captain walks across the deck from starboard to port,
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from point 1 to point 2. While he does that, point 1 of the ship goes
to position 1’ and point 2 of the ship goes to 2, and, of course, the
captain ends up in position 2’. We call 1-2 the relative displacement
and 1-1’ the vehicle displacement. The word “vehicle” will be used
throughout for the moving coordinate system; in this case the vehicle
is a ship; in further examples the vehicle will be a turbine rotor, an
elevator cab, a rotating table, the earth, or a crankshaft. In the
example of Fig. 261 the captain is the “moving point,”” which moves
relative to the ‘“vehicle” through path 1-2 and relative to “absolute
space” through path 1-2’. By “vehicle” displacement or velocity or
acceleration we shall always mean the displacement or velocity or
acceleration of that point of the vehicle which happens to coincide
with the moving point at the beginning of the displacement. This
in our case is point 1. The statement here has not much significance
because all points of the ship have the same displacement, but in
future cases of rotating vehicles it is important to keep this definition
in mind.

From Fig. 261 we draw the conclusion that the absolute displace-
ment is the vector sum of the relative displacement and the vehicle
displacement.

We shall see in the next article that this vector addition of a rela-
tive and a vehicle quantity resulting in an absolute quantity holds
not only for displacements, but also for velocities. It even holds
for accelerations, provided the vehicle does not rotate. But when the
vehicle rotates, we shall see that the absolute acceleration of a point is
not equal to the vector sum of the relative and vehicle accelerations.

66. Non-rotating Vehicles. We first investigate the case where
the vehicle moves parallel to itself, but not necessarily in a straight
path. The path may be curved, but all points of the vehicle move in
congruent and parallel paths like the bifilar pendulum of Fig. 224
(page 247). We choose one point of the vehicle for the origin 0’ of
the moving coordinate system and lay the z’ and y' axes fixed in the
vehicle (Fig. 262). Then the 0’2’y coordinate system moves parallel
to itself in a curved path with the vehicle. Let the distance 1-1’ be
the distance traveled by the vehicle point 1 in time At in its curved
path. If Af be made small the piece of path 1-1’ becomes almost
straight, and the distance 1-1’ can be written as v, At where v, is the
average velocity of point 1 of the vehicle during the time At.

Similarly the distance 1-2 can be written », A and 1-2' becomes
vo At. We have seen that these displacements satisfy the vector
equation

Vv, At 4 v, Al = v, At
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Now we divide by At, and let At become zero in the limit, so that the
average velocities become true instantaneous velocities. This leads
to the result
Ve Vo = V,
or in words:
For a non-rotating vehicle the absolute velocity is the vector sum
of the relative and vehicle velocities.

This sentence is only partly printed in bold-face type, because we shall see
later that the statement holds true for rotating vehicles as well, although we
have not proved it at this time.

‘We now proceed to consider accelerations, which are rates of change
of velocities. In Fig. 262 the vehicle is shown in two positions, time
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F1a. 262. The vehicle and its various velocities shown in two consecutive positions,
at time ¢ = 0 and at time ¢ = Af,

Yot
F1a. 263. The velocities of Fig. 262 reassembled into one figure.

At apart. The vehicle is moving through a curved path, and the
velocity of its point 1 at the two positions 1 and 1’ is different in direc-
tion as well ag in magnitude. The same is true of the relative speed;
at time ¢ = 0 the captain walks to portside, but at time ¢{ = Af he
runs towards the port aft corner of his ship. The two consecutive
positions of the ‘“moving point,” the captain, are 1 and 2’ and the
corresponding velocities are plotted in the figure. The vehicle velocity
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at time Al is the velocity of point 2’ of the vehicle, which is the same
as the velocity of point 1’ because the vehicle does not rotate. Thus
Vo = Vor. In Fig. 263 the vectors of Fig. 262 have been drawn once
more, the velocities at time ¢ = 0 in light lines, the velocities at time
¢t = At in heavy lines, and the differences, which are ¥ A, in dashed
lines. We see that the directions of the accelerations v in general are
totally different from the directions of the velocities. From the
geometry of Figs. 262 and 263 we deduce that v, At is the vector sum
of ¥, At and ¥, At, by the following process:

Vr1 + Avr = Vo
Vo1 + AV, = Vor = Vor

(Ve + Vo) + (AV, + AV,) = (Ve + Vor) (add)
Va1 -+ (Av, + Av,) = Voo

Therefore

Av, = Av, + Av,

av, _ av, | Av,

a AT A
and

6a = 6:‘ + ita (31)

or in words: For the case of a non-rotating vehicle the absolute accel-
eration is the vector sum of the relative and vehicle accelerations.

Before proceeding, the reader should satisfy himself that the validity of
this proof depends on the fact that in Fig. 262 the vehicle velocities of points 1’
and 2 are the same. If these velocities are different, which is the case for a
rotating vehicle, the formula (31) is false.

Now we are ready to look at Newton’s law. It holds only for
absolute accelerations:

F = mVpe = Mm(Vea + Voen) (3la)

Therefore we may apply Newton’s law, and all its consequences of the
previous chapters, to the accelerations relative to a non-rotating
moving coordinate system, provided we add vectorially to these
accelerations the parallel field of accelerations of the moving
coordinates.

Before discussing examples of this theorem, we will express it in a
somewhat different manner yet. The equation for a moving particle
can be written

F — mVom = mVy (31b)
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or

Newton's law may be applied to the relative accelerations of a
moving, non-rotating coordinate system, if only we add to each mass
element dm a fictitious or supplementary force of magnitude — V..., dm.

As an example consider the space inside an elevator cab rising with
an upward acceleration g/2. In the cab we, as observers, are looking
at a 110-1b lady who stands on a scale, holding a pendulum in one hand
and dropping her purse out of the other hand. What is (a) the scale
reading, (b) the period of the pendulum, (¢) the acceleration of the
purse, and (d) the telephone number of the lady?

Applying statement (31a) we observe that the lady has zero accel-
eration, but we must add 14g upward to that before applying Newton’s
law. The scale thus reads 110 1b for the weight and an additional 55
Ib to push the lady up. By statement (31b) we add a force Y4mg
downward to the 110-Ib weight of the lady, who thus tips the scale at
165 1b. By statement (3la) the pendulum swings like a pendulum
that is accelerated upward at g/2, although to me, the observer, no
such acceleration is visible. By statement (31b) the pendulum swings
under the influence of the gravity force mg plus a fictitious force
Y4mg downward. Thus it acts the same way as an ordinary pendulum
in a field of 1349 = 48.3 ft/sec?. The purse goes down in absolute
space with acceleration g. By statement (31a) we have to add to our
observed acceleration an acceleration g/2 upward; hence we observe
34g downward. By statement (31b) the purse is acted upon by its
own weight mg and by an additional downward force Y4mg; its mass is
m, hence it goes down with acceleration 34g9. Thus questions (a)
to (c) have been elucidated. The answer to question (d) is left to
the initiative and ingenuity of the reader.

An important conclusion that can be drawn from the theorems
(31a) and (31d) is that

Newton’s laws apply without any correction to coordinate systems
moving at uniform velocity, because the vehicle acceleration for such a
coordinate system is zero.

This places us in a position to clear up the question, discussed on
page 233, concerning the applicability of the formula M = I to two-
dimensional motion. It was proved that this formula holds for the
center of gravity and also for a fixed axis of rotation. We suspected
that it might be applicable to the instantaneous center of rotation,
i.e., the velocity pole, and possibly also to the acceleration pole.
Neither of these two latter points is a fixed center; the velocity pole
has acceleration and the acceleration pole has velocity. Let us now
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view the system from some suitably chosen moving coordinates. First
we take a coordinate system moving at uniform speed with the speed of
the acceleration pole P,. Newton’s laws apply directly to this
vehicle, and with respect to this vehicle the acceleration pole not only
has zero acceleration, but zero velocity as well. It therefore is a
fixed center, and the formula M = I is applicable to the acceleration
pole of a system moving in a plane.

Next we consider a vehicle with zero velocity but with an accelera-
tion Zr equal to that of the velocity pole. With respect to this coor-
dinate system the velocity pole is a fixed axis, because it has neither
velocity nor acceleration. Newton’s law is applicable in this coordi-
nate system only after we have added to the system a set of imaginary
forces —Zrdm. If these forces have a moment about the velocity
pole they will affect the angular acceleration, and we will find a dif-
ferent answer for ¢. If however these supplementary forces have no
moment about the velocity pole, we find the correct answer for ¢.
The supplementary forces are a parallel field £» dm, and their resultant
passes through the center of gravity. This force has no moment about
the velocity pole if the direction of #p passes through G. Thus we
find that the formula M = I$ is applicable to the velocity pole of a
two-dimensional motion only when the acceleration vector of that
velocity pole passes through the center of gravity.

Another application of the theorems (31a) and (31b) is to the situa-
tion inside Jules Verne’s projectile traveling to the moon. Looking
at this projectile from a terrestrial or absolute coordinate system, we
say that the outside shell as well as the passengers and objects inside
are all subject to the same acceleration due to the attraction of the
earth. Hence everything is floating inside the shell and nothing
appears to have weight. Looking at it from a coordinate system
moving with the shell, we first establish that the shell has an accelera-
tion towards the earth equal to the local ¢ (which is less than 32.2
ft/sec? at some distance). Then we apply to all objects inside the
shell the forces mg toward the earth, being the weight, and the sup-
plementary force mg away from the earth. Hence the objects, to an
observer inside the shell, behave as if no forces at all were acting on
them.

Even when a physical body is rotating, the theory of this article
can be applied. The limitation is that the vehicle or coordinate sys-
tem should not rotate. Consider for example an airplane moving at
high speed through a curve, so that the center of gravity has a
centripetal acceleration of 5g, while the airplane is turning in space.
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We can describe the motion with reference to a vehicle or coordinate
system with its origin in the center of gravity of the plane and with
its zyz axes pointing north, west, and up. With respect to this system
Newton’s laws hold, provided that supplementary forces 5g dm are
applied centrifugally. The center of the plane appears at rest, and
the plane turns with respect to our coordinate system. It is only
when we insist on choosing a coordinate system with the axis direc-
tions fixed to the plane instead of to space that the more complicated
theory of the next article must be applied.
Problems 307 to 310.

66. Rotating Vehicles; Coriolis” Law. When the vehicle trans-
lates and rotates, as in Fig. 264, the total or absolute displacement
1-2’ can still be considered to be the vector sum of a vehicle displace-
ment 1-1’ and a relative displacement
1’-2’,  Again considering those dis- y
placements to take place during the
short time At and letting Af go to zero,
the absolute velocity is seen to be the

vector sum of the relative velocity and i // 7'

the vehicle velocity, even for the ro- 2 =

tating vehicle. In Fig. 264 we could I//

have reversed the procedure, and in- 1 x
stead of going from 1 to 2/ via 1/, we Fia. 264. A rotating vehicle.

could have gone via 2. Still the

above statement holds verbatim, the direction 1-2 is different from 1/-2’

and the direction of 1-1’ is different from 2-2, but when we go to the

limit A¢ = 0, all these distances become small, the directions of 1-2 and
’-2' come closer and closer together and in the limit coincide.

Thus for velocities, rotating coordinate systems are no more com-
plicated than non-rotating ones, but when we proceed to accelerations
we broach a subject that is more difficult than anything we have seen
so far in this book. An analytical treatment is apt to hide the physical
relations behind mathematical operations. We therefore adopt a
geometrical manner of proof, which, although much longer than the
analytical one, brings out the physical significance more clearly. The
proof will be given for a number of simple special cases, from which the
general case will be built up gradually.

We first consider a table rotating at uniform speed « about its
center O (Fig. 265), and a point moving at constant speed v, along
a radial track attached to the table. The path of that point in space
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will be a spiral curve and the determination of the acceleration not

simple.

of the moving coordinate system O is at rest and the axes rotate.

w/ Ur

1

We now look upon the table as the vehicle, so that the origin

The
vehicle acceleration is w?r toward the cen-
ter; the relative acceleration is zero, because
v, is constant. Therefore, if Eq. (31) (page
298) would apply here, the absolute accel-
eration would also be w?r directed centri-
petally. We can see at once that this is
not correct by considering the tangential
velocity of our point in absolute space.
That velocity is wr, and it is not constant,

Fia. 265. The first special
case of the proof of Coriolis’
theorem: a rotating table with
a radial track.

because the point moves to larger radii,
into a region of greater tangential speed.
A point of which the tangential speed in-

creases with time has a tangential acceleration, which Eq. (31) fails to

disclose.

Now let us calculate the acceleration of the particle, which is

shown again in Fig. 266, in two consecu-
tive positions 1 and 2’. The absolute ve-
locity at point 1 is the vector sum of the
relative velocity v, at point 1 and the ve-
hicle velocity wr of point 1.
true for point 2/, but the vehicle velocity
there is w(r + Ar) = w(r + v, At).
absolute acceleration is the difference be-
tween the two absolute velocities divided
by At. We calculate this difference in
components: in the directions parallel to
01-2 and perpendicular to it. The angle
w Af is small, so that sin w Al =~ w At and
cos w At = 1, in which terms of the second
and higher powers of Af have been neg-
lected. Then, in the direction parallel to
012, we have

Av = [v, — w(r + v Al) 0 Af]
— v, = —wir Al
and

do _ —wlr
At

o

The same is = J'---T
Y,
r I_":’— ~
The w(r+up 4¢)

Fia. 266, Toward the proof
of Coriolis’ theorem. A point
moving along & radial track

on a rotating table is shown in
two consecutive positions 1
and 2’ with all its velocity
components.
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so0 that

beong = lim 2 = —
v,..n.;—hmAt w?r

In the direction perpendicular to 012 we have
Ay = [w(r + v, AY) + v, w Af] — wr
= wt, At + v, AL = 2wy, At

and

. . Ay
m....-—hmA—t=2wv,

The absolute acceleration is thus seen to consist of two components:
an outward radial one of magnitude —w? (which is a centripetal one
of +w?r), and a tangential one to the right of 2wv,. The first of these
is the vehicle acceleration; the second one is something new; it is
known as the ‘‘Coriolis acceleration,” after its inventor Coriolis
(1792-1843). 'Thus, we see that this special case satisfies the follow-
ing rule:

The absolute acceleration is the vector sum of three components:
the relative acceleration, the vehicle acceleration, and the Coriolis
acceleration. The Coriolis acceleration has the magnitude 2wv,,
where v,, is the component of the relative velocity perpendicular to
the axis of vehicle rotation. The Coriolis acceleration is directed
perpendicular to the v, vector and also perpendicular to the » vector of
the wvehicle.

The rule could have been stated much more simply for this special
case; however the reader should verify that,
as stated, it is correct for Fig. 266, and we , / Yr
shall presently prove that, in the above
form, it applies to the most general case as
well.

The next simple system to be consid-
ered is shown in Fig. 267. Again the
vehicle or moving coordinate system is a
table rotating at uniform speed w. Instead
of the radial track of Fig. 265, we now have )
a circular track. Let us imagine a toy oo .2127,;110'1‘;2:?"&’“102‘;;"1}:}
locomotive running over this track with theorem: a rotating table with
constant speed v,, while the table rotates, * concentric circular track.
Then the absolute velocity of the locomotive is still tangential and
equal to wr + v,. Its path in absolute space is still the same circle, so
that its absolute acceleration is centripetal and of magnitude [Eq. 6a,
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page 165]
) 1 . v?
va=-;(wr+v,)2 = wr+2wv,+7

an algebraic sum of three terms, all directed centripetally.

The first of these three terms is seen to be the vehicle acceleration,
or the acceleration of that point of the track just under the locomotive.
The last term is the relative acceleration of the locomotive with respect
to an observer rotating with the vehicle. The middle (Coriolis) term
is extra; it has the magitude 2wv, and is directed perpendicular to
the relative speed as well as to the w vector, which, as before, is per-
pendicular to the table. Thus the result in this case again obeys the
general rule.

The third special case to be considered is illustrated in Fig. 268;
the rotating table is the same as before, but the track this time is
not radial or circular, but perpendicular
to the table, and consists of a tube

through which the particle is made to

ﬁ"r move at constant speed v,. The abso-

lute velocity of the particle in space

consists of a vertical component v, and

Y a tangential one wr. Only the latter

A0 velocity changes with time and is the

same as the velocity of point A of the

vehicle. Thus the absolute acceleration

is equal to the vehicle acceleration only.

_ .. There does not seem to be a Coriolis

Pa. oftgérioggethz};fgm:s:e;;} term and, by the general rule, there

pendicular track on a rotating should not be any, because the relative

table. speed is parallel to the axis of rotation

and has no component perpendicular to it. Therefore, this special
case also obeys the general rule.

The reader should now repeat the reasoning for the three special cases
(Figs. 265, 267, and 268), dropping the assumption that w and v, are constants,
and introducing the accelerations w and #, in addition to the velocities w and v,.
He should verify that the results in all cases conform to the general rule of
page 303.

After the general rule thus has been proved for the three special
cases of radial, tangential, and vertical relative velocity, we proceed
to a particle of which the velocity relative to the rotating table has
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all three components simultaneously. The absolute acceleration
of that point then in general will have nine components: the relative,
vehicle, and Coriolis components for each of the radial, tangential,
and vertical cases. The three relative ac-
celeration components add up vectorially to
the combined relative acceleration, and the
same is the case with the vehicle acceleration.
Only for the Coriolis acceleration must we
satisfy ourselves that the resultant of the
three components still conforms to the rule
for magnitude (2wv,;) and direction. Since
the case of Fig. 268 has no Coriolis accelera-
tion, and the other two components (for

. .. Fia. 269. Compounding
FlgS. 265 and 267) lie in the Plane of rota- the Coriolis accelerations

tion, the resultant Coriolis acceleration is arising from radial and tan-

N gential relative speeds.
at least perpendicular to the » vector.

Figure 269 shows in full lines the two components of relative veloc-
ity in the plane of rotation, in dotted lines the corresponding
Coriolis accelerations. In each case the accelerations contain the
common factor 2w and are further proportional to the v, component
and perpendicular to it. Then the resultant Coriolis acceleration is
also perpendicular to the resultant relative velocity and proportional
to it, because the dotted rectangle is similar to the fully drawn one.

Thus the general rule of page 303 is proved for the most general
case of a rotating vehicle of which the center point is at rest.

For a non-rotating vehicle of which the origin moves, the general
rule of page 303 reduces to the special one of page 298, because the
Coriolis acceleration is zero. For a vehicle which not only rotates,
but of which the origin moves at the
same time, we have a superposition of
the two previous cases and the general
rule of page 303 still holds, although we
will not prove it here.

The analytical proof for the two-dimen-
o * sional case is shorter than the geometrical

F1a. 270. proof just given. In Fig. 270 let Oxy be a
coordinate system at rest and 0’z’y’ be a moving coordinate system. A point
P has the absolute coordinates z,y and the relative coordinates 2’,3’, and the
relation between these can be found from geometry (see also Fig.197, page 222):

z =20 + 2" cos — y sing
¥y = yo + 2z’ sin ¢ + y’ cos ¢
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Differentiation gives
£=1d0 +3 cosg—a'sinpep — g sing —y cospe
§ =90 +d'sing+a" cospp+y cosg —ysing¢
In these expressions zor and 7o+ are the absolute velocities of the moving origin

0'; for ¢, which is the angular speed of the vehicle, we may write w. Rearrang-
ing the terms somewhat, we write

z = [for — w(z’ sin ¢ + ¥’ cos )] + (&’ cos ¢ — ¥ sin ¢}
¥ = [§or + w(z’ cos ¢ — ¢’ sin )] + (&' sin ¢ + 7’ cos ¢)

Examining the brackets on the right of the & and 3 expressions, we see that
they mean the absolute velocities of a point P, when P is fixed with respect to
0’z'y’. These then are what we have called the “vehicle velocities,” by the
definition of page 296. The parentheses in the above expressions are the
velocities of point P with respect to the coordinates O’z’y’. Thus the above
equations state in words that the absolute velocity components are the sums
of the vehicle and relative velocity components.

Now we differentiate once more. We will do it here only for &, leaving the
similar 7 analysis to the reader.

2 =% — @2 sing — wi’ sin ¢ — wz’ cospw — @y cos ¢ — wy cos @
+wy sinpw+ £ cosp — &' sinpw — Y sing — 7 cospw
Rearranging,

2 = [#or + w2(y sin ¢ — 2’ cos @) — @z’ sin ¢ + ¥ cos )]
+ (£ cos ¢ — ¥ sin @)
— 2w(z’ sin ¢ + 7’ cos )

An examination of this expression shows that the bracket is the z com-
ponent of the absolute acceleration of point P, when P is fixed to 0'z’y’, and
thus the bracket is the vehicle acceleration. The second line is the z com-
ponent of the acceleration of P relative to O'z’y’, the relative acceleration.
The third line upon inspection is seen to be the 2 component of the Coriolis
acceleration, as defined in the general rule of page 303,

Now we are ready to consider the application of Newton’s law to
rotating coordinate systems. The law applies only to absolute
accelerations, or

F = m\'ra = m(fl,,l + "Vv.h + ‘.fcqr) (32(1)

in which the additions must be understood to be in a vectorial sense.
This equation can also be written as

F — mVy, — MVGor = MVra (32b)
or in words:
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Newton’s law applies in a moving coordinate system if only we add
to each mass element two fictitious supplementary forces : the vehicle
force — V.4, dm, and the Coriolis force — v, dm.

Thus, the term *Coriolis force” means a force equal to the mass
times the Coriolis acceleration, directed opposite to that acceleration.
It is a fictitious force, of the same nature as the inertia or centrifugal
force.

b7. Applications. The theory of Coriolis will now be illustrated
by applications to

a. Easterly and westerly deviations of projectiles
b. Bending in the arms of a flyball engine governor
¢. The man on the turntable

d. The fluid drive of automobiles

a. Easterly and Westerly Deviations of Projectiles. Imagine s
vertical mine shaft a mile deep, located near the equator. If a plumb
line is hanging in the shaft and a stone is dropped from rest next to it,
the stone will not fall parallel to the plumb line, but will deviate in
an easterly direction. The reason for this ap-
pears in Fig. 271, which shows the earth when
looked down upon from the North Pole. The
sun appears to us to run from east to west;
hence the earth rotates from west to east.
Looking on the phenomenon from an outside
or absolute coordinate system, we see that
the stone, before falling, moves easterly with /\
the peripheral speed of the equator. The bot- N
tom of the mine pit moves a little slower, being  Fia. 271. A stone drop-
closer to the center of the earth. When the ping down a deep mine

. . . shaft at the equator.
stone is dropped, the only force acting on it is
mg downward, so that the (absolute) acceleration in any direction but
the downward one is zero. Hence the stone keeps on going easterly
at its original speed and overtakes the bottom of the pit.

An observer on the earth, a rotating vehicle, would reason as
follows: If the stone should slide down a purely vertical or radial
track parallel to the plumb line, it would go to a region of smaller
easterly tangential speed; hence it would experience a Coriolis force
to the west from the guide. Since there really is no guide, this force is
absent and the stone will deviate towards the east. The Coriolis
acceleration is 2wy, where v is the velocity of the stone = gt, and w is
the angular speed of the earth: 2r radians/24 hours. Let the y axis

Equator,
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point east, then
7 = 2wyt
and integrated twice
[Ad t®
y=wg§-+Clt+Cg=wg§
The integration constants C, and C; are zero because at time ¢ = 0
we call ¥ = 0 and the easterly speed 7 is also zero. The time ¢ is
found from
z = lggt?

where = points downward. Eliminating the time between the two
equations, we find

%
—vg (2 : - 8¢
=2 %) o v

If the depth z = 1 mile = 5,280 ft, and
w = 2x/(24 X 3,600) radians/sec,
we find for the easterly deviation
y = 46 ft (for ¢ = 1 mile)

If a projectile ia shot straight up in the air at the equator, the
Coriolis acceleration is opposite to that of the falling stone; the
deviation will be westerly, and at the top of the trajectory there will
be a westerly velocity. On reaching the earth again there will be a
westerly deviation. The calculation is exactly like that of the falling
stone, only —v = vy — gi, instead of v = gt.

If a projectile is shot horizontally from
a gun at the equator toward the north or
south, there is no Coriolis effect. (Why
not?) If a projectile is shot at the equator

» 45 deg upward to the north, the deviation

will be westerly, the same as if it were

Fia. 272. Coriolis forces in Shot purely upward with 0.707 times its

the arms of a hunting engine initial velocity. (Why?) A bullet fired

governor. horizontally toward the north at 45° north-
ern latitude will reach the ground with an easterly deviation.

b. Bending in the Arms of a Governor. Suppose that the balls of
an engine governor (Fig. 272) “hunt’’ or oscillate up and down while
rotating at constant angular speed w. What force does that cause

Cref
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on the arms? Consider the rotating spindle as the vehicle. Then
the arms and balls oscillate in a plane containing the axis of rotation
of the vehicle and hence the Coriolis forces are perpendicular to that
plane. They do not, therefore, influence the motion in the plane of
the arms. Referring to Eq. (32b) (page 306), we see that the supple-
mentary force —mv., is the centrifugal force of the balls. Hence
the balls move in their plane under the influence of the centrifugal
force, the weight, and the tension force of the arms. The Coriolis
force has the magnitude 2w»,; and is directed perpendicular to the

oz

ar
1(021' 74

i2wv,-

Fra. 273. Shows the accelerations of the arms of the man standing on the turntable
of Fig. 249, page 281.

plane. While the balls are going up, i.e., in the direction of increasing
tangential speed, the arms must push them forward, and by action
equals reaction, the balls push back on the arms. Thus the arms are
bent in a direction against the rotation while the balls are swinging up,
and the arms are bent with the rotation while the arms swing down-
ward. This alternating bending moment has to be taken by the
hinges at the top and it becomes quite large for high speeds of rotation
w.

c. The Man on the Turniable. In Fig. 249 (page 281) it was shown
that a man on a rotating turntable can increase his angular speed by
pulling in his arms. We now propose to examine this question from a
somewhat different viewpoint. Consider as the system the turntable
plus the man without his arms. This is a rigid body, and when the
angular speed of this rigid body changes, a couple must be acting on it.
That couple evidently must originate in the moving arms, and in order
to understand how, we idealize the system to that of Fig. 273. Here
the turntable plus the armless man has the constant moment of inertia
I, and the arms are replaced by masses m moving inward with con-
stant velocity v, in a radial track fixed to I,. For our vehicle we
choose the turntable Io, which has a speed w and an acceleration «, as
yet unknown. One of the masses m is the moving point. The
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absolute acceleration of this point is the vector sum Vew 4 Voo, because
we have assumed the relative velocity constant. The vehicle
acceleration has a radial component w? and a tangential one ar, as
shown in Fig. 273. The Coriolis acceleration is 2wv, and is directed
against the rotation, because m moves to a region of diminishing
tangential speed. Hence the forward tangential force that must be
acting on the mass m is

F = mar — 2mwv,

This force is exerted on the mass by the track, and the mass reacts on
the track with —F. The forward moment about O by the two masses
on I thus is

Mo = dmww,r — 2mar? = Iow

by Newton’s law. If we call the variable total moment of inertia
I = I, + 2mr?, we can combine two terms.

dmwv,r = (Io + 2mr¥)o = To = [%ﬂt’
Also
dr
7 and dl = 4mrdr
Substituting, we obtain
—wdl = I dw

and
d_wﬁ + d_II =0 or log w + log I = constant

log wI = constant and wI = constant

This result, in which we note that I is variable, is that of page
280, the theorem of conservation of angular momentum. From this
example we see that the torque accelerating the turntable is the torque
of the Coriolis forces of the inward-moving arms.

d. The Fluid Drive of Automobiles. The most important element
of an automobile fluid drive is the hydraulic coupling sketched in
Fig. 274, consisting of two equal halves, each of which is keyed to a
shaft. Each shaft runs in its own bearings and has no mechanical
connection with the other. The angular speeds of the two shafts are
independent of each other and may have any ratio, positive or nega-
tive. On each shaft is keyed a coupling half A,B that can best be
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described as having the shape of half a doughnut, subdivided into
sections by thin radial plates like an orange. The torus-like space
of the doughnut is filled with light oil or another liquid, held in place
by a cover C, bolted to one coupling half and free to rotate without
friction around the other shaft at D. The cover C has no function
other than holding the oil inside the coupling. During starting and
stopping of the car, the driver and follower shafts (attached respec-
tively to the engine transmission and to the driving wheels of the car)
have widely different speeds, but during ordinary running the driving

Follower kw§& A Drier

(o) (b)
Fie. 274, The hydraulic coupling or “fluid flywheel” of an automobile drive.

shaft has a speed only a few per cent faster than the follower shaft.
The torque is transmitted from the driver or engine shaft to the
follower shaft by the action of the Coriolis foree of the liquid in the
doughnut, which will now be explained.

The radial vanes carry the liquid around with shaft speed and thus
the liquid is subjected to centrifugal force. This centrifugal force
is slightly larger in the driving shaft than in the following one because
its angular speed is slightly higher. Thus the liquid trapped in any
one of the orange segments will go into a circulatory motion, going
outward in the driving shaft and inward in the following one. If a
fluid particle moves through a full circle, the centrifugal force will do
positive work on it and the oil will accelerate until the friction resist-
ance makes equilibrium with the centrifugal driving force. This
occurs in practice with a “slip” of about 2 per cent, .e., with the speed
of the follower shaft being about 98 per cent of the speed of the driver.

Now, the liquid in the driver moves radially outward, into a region
of greater tangential speed and has to be accelerated by the vanes of
the driver. Thus the moving oil exerts a reactive counter torque on
the driver, holding it back. Similarly, in the follower the oil moves
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inward, to a region of smaller tangential speed, and its inertia pushes
the follower forward. Thus the torque is transmitted by action of the
Coriolis forces. If the torque demanded by the follower shaft is
suddenly increased, as when the car comes to a hill, the follower shaft
will slow down, thus increasing the difference in centrifugal forces,
thus increasing the circulatory relative speed and with it the Coriolis
forces. Therefore the torque transmitted by the oil from the driver
to the follower is roughly proportional to the slip.

The device is a torque transmitter of very high efficiency. When
the two shafts are running at constant but different speeds, the torques
on the driver and follower must be equal by Newton’s law of action
and reaction. Then the work done by the two shafts is proportional
to their angular speeds, and the efficiency is the ratio of the two angular
speeds, which is about 98 per cent.

Problems 311 to 323.




CHAPTER XVII
GYROSCOPES

58. Theorems on Rotation in Space. In the previous chapters a
complete theory of the dynamics of bodies moving in two dimensions
has been given, and only occasionally mention was made of three-
dimensional motion. Most of the theorems derived heretofore are
valid only for plane motion and that fact has been stated explicitly
in those cases. In a few instances, however, a theorem happened to
be generally true for three-dimensional motion as well, and we
succeeded in proving it.

The most notable property so found is the one expressed by Eq.
(26a) (page 273), which in slightly different words states that the
motion of the center of gravity of any system (rigid or non-rigid) in
three-dimensional space is the same as the motion of a particle, in
which the total mass of the system is concentrated, under the influence
of all external forces of the system, displaced parallel to themselves
to act in the center of gravity.

This theorem enables us to calculate the motion of the center of
gravity of a rigid body under all circumstances where the external
forces are known. In order to find the complete motion of a rigid
body we still have to determine the rotation of the body about its
center of gravity. The theory of the rotation of rigid bodies in the
general case is extremely complicated and consequently is outside
the scope of this book. In fact, many problems in this category
have never been solved yet. However, the object of this chapter is
to give a theory of the gyroscope, sufficient to explain and predict
the performance of most technically important applications, and this
can be done with comparatively simple means. For an understanding
of the technical applications, a study of the remainder of this article
and of the next one is not essential, so that the reader may proceed
directly to page 322. However, in order to indicate what is difficult
and what is simple in the general theory we will now state a number
of theorems on three-dimensional rotation of rigid bodies. After
the statements a discussion follows, in which some of these theorems
will be proved and others merely made plausible and illustrated by

examples. The twelve statements are as follows:
313
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I. Finite angles of rotation of a rigid body about different axes
in space, all intersecting in one point, cannot (repeat not) be com-
pounded vectorially (Fig. 275).

II. Very small angles of rotation of a rigid body about different
axes in space, all intersecting in one point, can be compounded vec-
torially into a resultant angle of rotation about the resultant axis.
Hence, if we divide these small angles by a time Af and go to the limit
At = 0, we find

III. Angular velocities of a rigid body about various axes in space,
all intersecting in a point, can be compounded vectorially into a
resultant angular speed about THE axis of rotation. This theorem
will be proved on page 316.

IV. When the moment of a force in space about an axis is laid off
as a vector along that axis, and the moments of one such force are so
laid off on three mutually perpendicular axes through a point O, then
the vector sum of these three vectors represents the moment of that
same force about the resultant vector line, The moment of the force
about this resultant line is greater than about any other line in space,
the resultant line being perpendicular to the plane through the force
and the point 0. The resultant vector is called the moment vector
M of the force about the point O.

V. When the angular momentum of a rigid body or of a non-rigid
system about an axis is laid off as a vector along that axis, then the
vector sum of three mutually perpendicular angular-momentum vec-
tors through a point represents the angular momentum about the
resultant vector line. The resultant then is THE angular momentum
vector 9 of the system, being greater than the angular momentum
about any other line through the point.

It is noted that theorems IV and V are limited to three mutually
perpendicular axes, while IT and III are true for any number of axes
with any angles between them.

VI. A rigid body has within it three mutually perpendicular
directions (through its center of gravity or through any other point)
for which all products of inertia are zero. These directions are called
the “principal axes of inertia” for that point of the body. One of the
principal moments of inertia is the maximum moment of inertia for
any axis through that point; another principal moment of inertia is
minimum ; the third is necessarily ‘“‘intermediate.”

VII. The angular momentum of a rigid body about an axis O fixed
in space is expressed by Jowo ONLY if O coincides with one of the
three principal axes of inertia of the body or also if O happens to be
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the axis of rotation. If the axis O is not a principal one and if the
angular speed w; about any axis perpendicular to O is not zero, then
the angular momentum 9% is not equal to Jowo (see Fig. 282, page 321).

VIII. If a rigid body rotates with speed w, about a principal axis of
inertia, and with ws = ws = 0 about the other two principal axes,
then the angular-momentum vector 917 has the same direction as the
angular-speed vector w; (which is along the axis of rotation).

IX. If a rigid body with two or three different principal moments
of inertia rotates about an axis not coinciding with one of the principal
axes, then the angular-velocity vector » and the angular-momentum
vector 91 have different directions.

X. The formula M = 4 /dt, is true about any axis fixed in space
(this is the theorem of page 280); it takes the form M = d(Iw)/d¢
ONLY if the axis is a principal axis of inertia of a rigid body or if the
rigid body is constrained by bearings to rotate permanently about an
axis fixed to the body.

XI. Applying the scalar formula M = d911/dz about three mutually
perpendicular axes through a point, and performing vector additions
of the three components of the moment M as well as of the three com-
ponents of rate of change of angular momentum 9?, which is permis-
sible by theorems IV and V, we find the result

d
M == () (33)

This vector equation states that for a rigid body the vector repre-
senting the moment of the external forces (either about the center of
gravity or about a point of the body that is fixed in space) equals the
time rate of change of the angular-momentum vector. The definition
of ““moment about a point” is given in theorem IV, Equation (33) is
the fundamental formula by which gyroscopic phenomena will be
explained.

XII. A rigid body free in space without any constraints can rotate
permanently only about a principal axis of inertia.

These are the twelve statements. We now proceed to discuss them
one by one.

69. Discussion of the Theorems. The first theorem states that
finite angular rotations cannot be added vectorially. This is illus-
trated in Fig. 275, where a book is shown in four positions, each found
from the previous one by a 180-deg rotation about some axis; first
vertical, then fore-aft, and finally left-right. We see that after
these three rotations the book ends up in the original position, so that
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the resultant rotation is obviously zero. A vector addition of the
three rotation vectors shows a rotation of 180° X +/3 about a diagonal
of the cube, which is an incorrect answer. This case is brought up
only to show that not every directed quantity can be compounded
vectorially and that for each case where it 4s permissible we have to

éﬁ% | L)/ ﬁ —“‘
1 2 3 4

Fia. 275. Three consecutive 180-deg rotations about perpendicular axes bring a rigid
body back to its starting position.

prove it. In particular, Fig. 275 is an apology for the tedious proof
of theorems II and III, which now follows.

We start in Fig. 276 with a single angular-speed vector, which is drawn in
the plane of the paper. We consider a point P at height % above this plane,
and of which the projection on the plane is at normal distance n from the
vector, so that the distance r between point P and the vectorisr = /A% + nt.
The velocity of the point P is then wr, perpendicular to its radius r, and this
velocity can be resolved into a component wn perpendicular to the plane of the
paper and a component wh parallel to that plane, which is illustrated in Fig. 276
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Fia. 276. Shows the velocity components caused by the angular velocity w vector of a
point P lying at distance h above the plane of the drawing.

Now we proceed to Fig. 277, showing two angular speed vectors w; and w.
in the plane of the paper. The point P, at distances n,,h and n,,h, is under the
influence of both rotations simultaneously. By what we just saw in Fig. 276,
the velocity of P has four components, two parallel to the plane and two per-
pendicular to it. The two velocity components of P parallel to the plane are
sketched to the left of Fig. 277, and are w.h and wsh. They add up to a
resultant w5k in the plane, perpendicular to the resultant angular-speed vector
w1z, because the P-velocity parallelogram to the left is similar to the angular-
speed diagram to the right, all corresponding lines being perpendicular to each
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other. The two velocity components perpendicular to the plane are w;n, and
wzm, and add up algebraically, being both in the same direction. Now win,
can be looked upon as twice the area of triangle POA,;, and w.n, is twice the
area of triangle POA,. Next we look at these two triangles as having the
common base PO and having for heights the perpendiculars dropped from 4,
and A; on PO. The sum of the two areas is a triangle with base PO and a
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F16. 277. The vector sum of the velocities of point P caused by w1 and by w: separately
equals the velocity of P caused by wis alone.

height equal to the sum of the heights, 1.e., the sum of the projections 4, to
PO and A, to PO, which is A; to PO. Thus the velocity of P normal to the
plane of the paper is twice the area of triangle POA; which is w;2 multiplied by
712, the normal from P on w;s. Thus the two components of the speed of P
paraliel and perpendicular to the plane are wiq.k and wiam,s, so that by Fig. 276
we can regard the velocity of P as being generated by the single rotation vector
wyz only.

The theorems IT and ITI have thus been proved for two rotations. A third
angular speed vector ws can be laid through O in Fig. 277, this time not in the
plane of the paper. We now lay a plane through w, and the resultant w,,, and
repeat the proof. In this manner the

theorem is seen to be true for three and z
hence for any number of angular-speed ~
vectors. ~Fxz
P
We now proceed to the proof of o
theorem 1V and the closely related *y S x
theorem V.

Let in Fig. 278 the three mutually ¥
perpendicular directions through point
O be z, y, z and let the force F pierce F16. 278. Toward the proof of
the zz plane in point P. 'We resolve the theorem IV.
force into components F, parallel to the y axis and F,, in the zz plane. We
aim to prove the theorem first for two axes, z and z, proceeding to the third
axis later. We note that the component F., has no moment about either the
or the 2 axis, since it intersects both. Thus the moment of F about those axes
is due to F, only, and we now turn to Fig. 279, which is the zz plane of Fig. 278
and shows the force F, perpendicular into the paper at point P. The moments
about the z and z axes are M; = —F, a and M, = F,b plotted with the usual
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right-hand-screw convention of Fig. 95 (page 104). It is seen in Fig. 279
that the vector sum (M, + M. = M., = F,r) of these two moments indeed
represents the moment of forces F, about it, so that we have proved that the
vector sum of the moments of force F about two perpendicular axes, z and z,
represents the moment of force F about the resultant vector as axis. For the
next step we lay a new plane coordinate system through the F,r direction of

Fig. 279 and the y axis, and repeat the proof,

z combining the resultant M., with M,. This
;’;71' s completes the proof of the first part of theorem
4 Iv.

To understand the second part of theorem
_é_____*p 1V, we remark that the procedure can be re-
B P

AT T T4
\
8

Y Al versed and that the resultant moment M.,

just found can be resolved again into three

e O \ moments about three perpendicular axes. In
\ doing this we do not need to take the same zyz

system we started from, but can take any other;
Figa. 279. Vectors represent-  in this way sweeping through all possible direc-
}’,‘i,ﬁgﬁ;‘;ﬁ:’";n:i: fz aa::;ce % tions in space through point 0. Now, the reso-

Iution of a vector into three mutually
perpendicular components always gives components smaller than the result-
ant, because the resultant is always the diagonal of the parallelepiped. Thus
the resultant just found is the maximum moment the force F' can have about
any axis in space through point O, and hence the resultant vector must be per-
pendicular to the plane through the force and O.

Theorem V relates to the moment of momentum tnstead of to the moment
of a force. TFor a single particle dm of the body we can think of the vector
v dm as of a force and apply the proof just given. Thus in theorem IV we can
replace the word “foree’” by ““momentum of a single particle.” If the system
consists of many particles there are many small v dm vectors. By the pro-
cedure discussed on page 106, we now replace the conglomerate of all these
vectors by a statically equivalent space cross, one of whose component vectors
passes through the intersection of the three mutually perpendicular axes,
while the other one does not. Then, by Varignon’s generalized moment
theorem of page 136, the moment of that last vector about any axis equals the
moment of the many » dm vectors about that axis.

Therefore theorem V is proved and we recognize from the proof
that it is not restricted to rigid bodies, but holds true for swarms of
particles or for deformable bodies as well. For the same reason as
explained above for a force, the resultant vector has the direction
about which the angular momentum of the body is an absolute maxi-
mum, and therefore can be regarded as the angular-momentum vec-
tor of the body. It can always be resolved into three mutually
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perpendicular components. One particular case of this resolution is
when one of these three directions coincides with the vector. Then
the two other components of the resolution are zero.

The moment vector or the angular-momentum vector can be
resolved into components in two or three mutually perpendicular
directions only, and not in any number of arbitrary directions, like
the angular speeds of theorem III. The physical reason for this
becomes clear when we try to resolve the angular-momentum vector
into components along two different directions that almost coincide
with the vector itself, including angles de with it. The two com-
ponents then are about half as large as the original resultant, which is
obviously incorrect, because the angular momenta of a system about
two axes close to one another ought to differ very little from each
other. On the other hand, rotations of 5 rpm and 10 rpm about two
axes practically coinciding do add up to approximately 15 rpm about
the resultant axis.

Theorem VI is an extension of the properties of moments and
products of inertia from two- to three-dimensional bodies. A good
proof of it usually occupies an entire chapter in the more advanced
treatises on dynamics, and therefore will not be given here. As an
illustrative example consider a solid rectangular block of side dimen-
sions a, b, and ¢, (Fig. 280), of which  we have seen on page 225 that
the three principal moments of

inertia are ;—’2-’(62“2)
_m o)

Lo = 12 (a® + b?), ‘ ﬂ/‘(au

m < 12
Ingw = — (b2 4+ ¢%),

12 — al %1622* 2/

Iy = —11—; (a? + ¢?) / 1z
/ 5

From symmetry we can deduce
that the products of inertia
about these principal axes are Fia. 280. Shows the three principal axes
zero (Fig. 198, page 223). The- of inertia of a parallelepiped.
orem VI now states that a rigid body of any complicated, unsymmetri-
cal shape has the same properties; in other words, that for any such
body it is possible to construct a rectangular parallelepiped (Fig. 280)
that has exactly the same moments and products of inertia as the origi-
nal body, about axes in all possible directions.

Theorem VII is illustrated in Fig. 281. We have seen on page 277
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that if a body rotates about an axis O with speed w,, its angular
momentum is Jowe. Theorem VII concerns itself with possible addi-
tions to this amount caused by the simultaneous rotation w, about
another axis. In Fig. 281 the velocity of a particle dm at P as a

Y
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Fia. 281. In (b) the ¥ axis is not a principal axis of inertia; then a rotation about
another axis, like w: about the = axis, contributes to the angular momentum about the
y axis, This is not the case in (a), where the y axis is a principal axis.

result of w; is w,y;, coming perpendicularly out of the paper. The
momentum is w;y dm, and the angular momentum about the y or
I axis is wyyz dm. Integrated over the body, the increment in angu-
lar momentum about the y or I, axis caused by rotation w; about the
z axis is

Jowzy dm = wily

This addition is zero only if the y axis is a principal axis, so that
I, = 0, or if the y axis is the axis of rotation, so that wy = 0. Phys-
ically we see in Fig. 281a that the contributions to the angular momen-
tum due to w; about I, by the elements P and Q cancel each other
(because Io is an axis of symmetry and hence a principal axis). On
the other hand in Fig. 281b, where the y axis is not a principal axis,
the contributions by the elements P and @ have the same sign and
hence reinforce each other.

Theorem VIII is a direct consequence of theorems III and V com-
bined, and is mentioned because it serves to clarify the physical picture
of the relationship between the angular velocity vector w and the
angular-momentum vector 91,

Theorems IX, X, XI, and XII again follow directly from the
previous theorems and require illustration on an example rather than
formal proof. For the example we choose Fig. 282, a cylindrical rotor
of which the shaft center line passes through the center of gravity,
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but is offset by angle o from the geometrical center line, which is a
principal axis of imertia. This rotor spins with constant angular
speed w about its shaft, in bearings that are solidly anchored to ground.
Obviously the angular-speed vector w is permanently along the shaft
center line. In order to find where the 91 vector is, we resolve w along
the two principal directions, which is permitted by Theorem III,
g0 that w; = wcos @, wy = wsin @, and ws = 0. By theorem VII

(a)

Fig. 282. A rotor turning about a shaft not coinciding with a principal direction of
inertia has an 9 vector in a direction different from the shaft w.

the components of angular momentum are I, and Iows, or Iiw cos a
and Jyw sin «. In the example I, is substantially larger than I,; in
the figure I; = 5I;. 'Then, by theorem V, we may add these two com-
ponents vectorially, as is done in Fig. 282b, with the result that

Muotas = @ vV (I1 c0s @)2 + (I sin &)

The direction of 9% is seen to be entirely different from that of w,
which is what theorem IX affirms.

Now let us apply theorem XI [Eq. (33)] to this situation. From
the geometry of Fig. 282 we see that the 9% vector is forced by the
bearings to rotate in a conical path. Hence d9m/dt is not zero and
there must be an external moment acting on the body, which must be
furnished by the bearings.

This moment is caused, of course, by the centrifugal forces of P
and @, so that the upper bearing pushes the rotor to the left, and the
force was calculated on page 216 (Fig. 190). Now we will calculate
that force by the method of theorem XI |Eq. (33)].

The end point of the M vector is seen to describe a circle in a
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horizontal plane of radius 91 sin 8. During time d¢ the rotor turns
through angle w df and the end point of 9 displaces a distavce IMw
sin 8 dt. Therefore M = dI/dt is a vector of magnitude Mo sin B,
directed perpendicular to the paper and pointing towards us. This
is'a counterclockwise couple in the plane of the paper and represents
the couple of the two bearing forces on the rotor. We can satisfy
ourselves by algebra that this result is the same as that obtained on
page 216 by the method of products of inertia.

M = Mw sin B = Mw cos (¢ + 7v)
= 9Nwlcos  cos ¥ — sin « sin ]

But
N _ _ILw_‘ _Licosa
Y = Taoe - I.sina
Therefore
. I, cos a Iicosa
siny = - =
v/ cos a)? + (15 sin a)? M/w
and
08 v = I,sin _I;sina
Y Vs a): + Gasna) oM/
Hence

M = w¥I;sin a cos o — I, sin & cos a}
Iz - I1

= w? sin 20 = w?l,,

by the equation on the top of page 223.

From this example the truth of theorem XII is immediately recog-
nized. A rigid body rotating permanently about an axis that is not
a principal one requires bearing forces. Consequently, if the bear-
ings are removed, the body can no longer rotate about that axis. Only
when the bearing axis coincides with a principal axis of inertia (I, = 0)
can the bearings be removed without interfering with the motion.

Problems 324 and 325.

60. The Principal Theorem of the Gyroscope. By a gyroscope we
mean a rigid body that rotates at a very large angular speed 2 about
one of its principal axes of inertia, and of which the rotation » about
axes perpendicular to this ‘“‘gyroaxis’ are very slow compared to the
main rotation Q. This definition involves two important simplifica~
tions from the general rotating rigid body:

a. The axis of rotation is a principal axis.

b. The ratio Q/w between angular speeds is “infinitely”’ large.

As an example consider the motion of a top or of a half dollar that has
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been set spinning on the table about a vertical diameter. As long as
the speed of the top or of the coin is large, it stays upright perfectly
and without hesitation; when the spin slows down it starts to ‘‘ precess”’
or “gyrate,” and just before falling down, the motion becomes extremely
complicated. We will call the top or the coin a ‘““gyroscope’ only in

paa

—

Fra. 283. To derive the principal theorem of the gyroscope from the angular momen-
tum Eq. (33).

the first phase of this process when the motion is quite simple and
Q/w is very large.

In practically all technical applications the gyroscope is not free,
but held in bearings, usually ball bearings, and rotates at as high a
speed as is practically possible, of the order of 20,000 rpm. As we have
seen in the example of Fig. 282, the bearings will be subjected to forces
proportional to ©2I.,, and since @ is enormously large, these forces
become prohibitive even for very small values of Iy, that is, for very
small deviations of the axis of rotation from a principal axis of inertia.
Therefore gyro rotors for technical work have to be balanced to an
extraordinary high degree of precision.

As a consequence of the two simplifications just mentioned, the
angular-momentum vector 9 will always be directed along the axis
of rotation, and this fact in conjunction with theorem XI [Eq. (33) of
page 315] suffices to explain all technically important properties of
gyroscopes. Consider as an example a bicycle wheel spinning at high
speed Q@ about the vertical z axis (Fig. 283), and suppose that this
wheel, while spinning fast, is given a very slow rotation « about the
horizontal z axis, by means of two handles, attached to it, so that point
P goes down and Q goes up very slowly. We ask what forces have to
be exerted on the handles to bring about this slow & motion.
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We reason as follows. On account of the w motion the angular-
momentum vector M = IQ turns slowly in the fore-and-aft yz plane.
During time dt the angle of rotation of the vector is w dt and its end
point moves forward, in the zy direction, through a distance

Mw dt = I dt,

or at a rate of /Qw Ib-ft-sec/sec. This then is the rate of change of the
angular-momentum vector, and by Eq. (33) it is equal to the moment
of the forces acting on the body. The dit/dt = M vector points in
the direction of the y axis, so that the forces F acting on the system
are parallel to the z axis as shown. The principal theorem of the
gyroscope is

If a gyroscope of angular momentum I rotates slowly with speed
w about an axis perpendicular to the gyro axis, a couple 72 acts on the

2 gyroscope about an axis perpendicular to
both the gyro axis Q and the axis of slow
o rotation w.
As a second example we consider in Fig.
w 284 the same bicycle wheel with its axis hor-

I  izontal, suspended from a string at the end
F=#———>  f one handle. The experiment shows that
the wheel does not fall down, as it undoubt-~
edly would if it were not rotating, but
IW moves very slowly in a horizontal plane.
The center of gravity does not accelerate
5lhae.elzg:;peﬁ d:‘ét?:;’: absi;?rliﬂ; appreciably, so that by the theorem of page
precesses slowly around the 913, the resultant force on the wheel must be
string. zero. The weight W is acting downward;
hence the string force must be W upward and the wheel experiences a
moment Wa with its arrow into the paper. This then is the rate of
change of M, or in other words the end point of the P vector moves
into the paper by a distance Wa dt during time df. Physically this
means that the wheel axle remains horizontal and the whole wheel
rotates about the string in a counterclockwise direction seen from
above. Again we have three mutually perpendicular directions;
M to the right; M into the paper and w upward. From the principal
theorem of the gyroscope we know that

IQw =M = Wa

becx-¥

but we will deduce it once again directly from Eq. (33). During time
dt the end point of M moves Wa dt, but, by geometry, this is also
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Mde = Mwdt = [Qdl. Hence

Wa

Wa = IQw or © =T

The slow » motion is called the precession, a term originating in
astronomy in connection with the precession of the equinoxes (page
333).

We will now give a second, different, proof of the principal theorem
of the gyroscope, which will throw additional light on the physical
gignificance of it. In Fig. 283 we consider a single particle dm of
the disk, and calculate its acceleration and consequent inertia force.
The components of this inertia force in the zy plane have no moments
about the z or y axes and do not interest us, but the z or vertical com-
ponent is important. The motion of a point dm can be looked upon
as the sum of the fast rotation @ about the z axis and the slow rotation
w about the z axis. Only the latter motion causes vertical velocity
of the point dm. When dm is at location P in Fig. 283, its vertical
velocity is maximum downward; at Q it is maximum upward; at the
intermediate points A4 and B it is zero. But the rate of change of
vertical velocity is maximum at A and B. When passing through 4
the point dm is coming out of a region of downward speeds and is going
into a region of upward speeds, hence its acceleration at A is upward.
There must be upward force 2 dm acting
on the particle at A, which is furnished
by the surrounding particles of the disk.
By action equals reaction, the particle
dm at A pushes down on the disk. By
a similar reasoning we deduce that a
particle at B must push up on the disk,
while particles at P and Q are neutral.
Integration of these effects over all the fﬁ;—) rzif- ofpt:l‘;ing ﬂrlgsfzmcili:l
particles of the disk leads to the con- integration of the mggmentsp:f ch‘;
clusion that these inertia forces exert a i“;t’t.i? forces of the constituent
clockwise couple on the disk about the particies.

y axis, which is held in equilibrium by the counterclockwise couple of
the two forces F.

To reduce this consideration to a formula, let ¢ = @t be the angle
between dm and the y axis (Fig. 285), and let ¢ = «t be the angle
between the disk and the horizontal zy plane.

When we reach the final result of the analysis we will consider
¥ = 0 (the disk is horizontal), but ¢ = w is never zero, and we cannot
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assume ¢ = 0 at the beginning, because if we did that, we could not
differentiate. Figure 285 shows the velocity components in the plane
of the disk. The component Qy, parallel to the z axis, has no vertical
component; but the speed 9z points upward at the small angle ¢.
Furthermore point dm is subjected to a rotation w about the z axis.
Thus its velocity upward is

v, =2= Quy — wy
Differentiating, we find

= Qiy + Q) — oy

as our final result. Now we are ready to consider the disk horizontal,
¥ = 0, so that the first term vanishes. In the other two terms we have

V=0, §=(Fcoseg) = —rsing¢=—2p= —z0

s0 that
2 = 2Quzx

The inertia torques about the z and y axes are

M, = [yzdm = 2Qw[yz dm = 2Qwl,, =
= [2zdm = 2Qw[2? dm = 2Qw]s,metrn

But by page 226 the diametral moment of inertia is half the polar
moment of inertia about the 2z axis, so that the torque about the y
axis is Qwl, which proves the principal theorem of the gyroscope
once more.

61. Applications. In this article we discuss applications of
gyroscopic theory to the following cases:

Ships’ turbines and aircraft propellers
. The bicycle

. The Sperry anti-roll device for ships

. The artificial horizon for aircraft

. The precession of the equinoxes

® Ao oA

a. Ships’ Turbines and Aircraft Propellers. The rotors of steam
turbines for ship drives or the propellers of airplanes are objects of
considerable moment of inertia rotating at high speed about a principal
axis. When the ship or airplane turns during a maneuver, or rolls or
pitches, the direction of the axis of rotation of the turbine or propeller
is forcibly altered with the ship’s motion and hence a gyroscopic torque
appears, which is furnished by extra bearing reaction forces. As an
example, we calculate those bearing forces for an especially severe
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case: an auxiliary steam-turbine rotor consisting of a single Laval
disk is mounted with its shaft athwartships in a destroyer. The
turbine disk runs at 10,000 rpm; its radius of gyration k = 8 in.
[see Eq. (12), page 224]; its bearings are 8 in. apart, and the destroyer
in very bad weather rolls 45 deg each way from the vertical with a
period of 10 sec per complete cycle.

Assuming harmonic oscillation (page 159), we have for the angle of
roll, ¢, of the ship

. 2t . 2r
¢ = posin 5 and = 7 o 08 wt

The maximum angular velocity of the ship about the roll axis thus is

. 2 2r .
@ = Pmax = —;;r Yo = E% = 0.5 radian/sec

The angular velocity © of the turbine-gyroscope is

="M, _ T

60 35 10,000 = 1,050 radians/sec

If we denote the mass of the rotor by m lb in.~! sec?, its moment of
inertia is mk? = 64m lb-in.-sec2. The ‘‘gyroscopic couple” is

M = 19 = 64m 200 — 33,500m Ib-in.
and the “gyroscopic force’’ Foy., on a bearing is this amount divided by
the bearing distance of 8 in.

Fero = 4,200m 1b

The static force F,; on each bearing, which is the force for a non-rolling
ship, is
Fu = Y4mg = 193m lb

We see that the gyroscopic bearing force is more than 20 times the
static force. The various directions are shown in Fig. 286, where the
w vector, which is the rolling-velocity vector of the ship, points for-
ward. This means that the starboard or right-hand side of the ship is
going down in the rolling motion. The turbine rotates clockwise
when looking toward starboard. Under these circumstances the
reader should satisfy himself that the forces F,., and F,; from the bear-
ings on the shaft have the directions indicated in the figure. As an
exercise the reader should sketch a figure like Fig. 286 for the case of
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an airplane carrying an engine and propeller when the plane is flying
horizontally, making a sharp turn to the right.

b. The Bicycle. We know from experience that a bicycle moving
on a straight path is stable in the upright position, although it rests
on the ground in two points only. In order to explain this stability,
we must show that if the bicycle is inclined at a small angle with respect
to the vertical plane, forces come into play that drive it back into the
vertical. The explanation is that when the rider feels that he is falling
toward the right, he turns his front wheel slightly towards the right.

F16. 286. A small, auxiliary turbine disk mounted athwartship in a rolling destroyer.

thus guiding the bicycle into a curved path. The centrifugal force
set up by this motion, acting on the center of gravity, pushes the
bicycle back into the vertical position. Thus the ordinary stability
of the device has nothing to do with a gyroscope.

However, we also know by experience that it is possible to ride
the bicyele without our hands on the handle bars. In this case the
gyroscopic action of the front wheel causes it to move in the same
direction as the rider would ordinarily force it to move. The angular-
momentum vector N of the front whee! points to the left. If the
bicycle falls towards the right, the end point of the 9% vector moves
upward. Thus the moment vector M = dI/d¢ points upward, which
is a counterclockwise torque seen from above. This is the torque that
must be acting on the wheel if it is to move straight forward, which
means that the rider if he had his hands on the handle bar would have
to exert a couple pushing the wheel to the left while it was going
straight forward. When he does not exert that couple, the front wheel
will turn to the right, thus giving the centrifugal force its chance to
push the bicycle back to the vertical position. This explains why,
for stability without our hands on the handle bars, we require greater
forward speed than for operation with the use of our hands. It also
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explains why the motions of the handle bars are unnoticeably small
at reasonable speeds, while for very slow speeds stability can be had
only with violent and large turns of the front wheel.

c. The Sperry Anti-roll Device for Ships. The Sperry anti-roll
device for ocean-going ships consists of one or more very large gyro-
scopes rotating about a vertical axis in a horizontal plane, mounted in a
frame A (Fig. 287). This frame is mounted in bearings so that it can
rotate (slowly) about an athwartship axis BB. The frame A carries

A

 ——

Left J\’\

(a}
SEEN FROM REAR
d; dz
Left Right
A
B l:‘( B
(6) (c)
SEEN FROM REAR SEEN FROM RIGHT

F16. 287. The Sperry anti-roll gyroscope for ships, The large gyro with a vertical
axis can be precessed slowly fore and aft by the precession motor D, causing a gyroscopic
reaction torque on the ship against the direction of the rolling motion.

a segment of spur gearing C, meshing with a pinion on the shaft of
the ““precession motor’’ D.

The angular-momentum vector I of the gyroscope is normally
vertical, and when the precession motor rotates the frame about BB,
the end point of the I vector tips in a fore-and-aft direction, up to a
maximum of about 30 deg on each side of the vertical. Thus the
moment of the forces on the gyro frame is about a fore-and-aft axis,
and its reaction is taken in the form of vertical forces on the bearings
B, one up and one down. These bearings are mounted in the ship,
and thus we see that a rotation of the precession motor results in a
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torque on the ship about the longitudinal or roll axis. For proper
operation it is necessary to reverse the direction of rotation of the
precession motor periodically, in such a manner that the gyroscopic
torque exerted on the ship is always directed against the rolling motion.
This is accomplished by means of a small “‘pilot gyro” (Figs. 287b and
¢), which is mounted in the ship in the same manner as the full-size
gyro, but which carries no gear segment and has no precession motor.
Instead of this there are two stops, also functioning as electric con-
tacts, preventing the pilot frame A from rotating about BB, except
for a small angle of a few degrees. When the ship rolls, the I vector
of the pilot gyro experiences an athwartship increment, the necessary
couple for which is furnished by fore-and-aft forces at the electric
contact and at the bearings B. Thus a roll of the ship in alternate
directions produces alternate electric contacts at d; and ds, which
through appropriate relays control the full-size precession motor D.

Practically the same arrangement has been proposed for a mono-
rail car, which is a railroad car running along a single rail. Without
special stabilizing equipment such a car is like a bicycle with clamped
handle bars and is obviously unstable sidewise. A gyroscope aboard
the car with a normally vertical spin axis, which can precess by +30
deg in a vertical plane, creates the possibility of providing a torque
about the fore-and-aft axis. The pilot that governs the precession
motor now must be made sensitive to the vertical direction and there-
fore must contain a gravity pendulum or its equivalent. When the
car heels over to one side the pendulum makes an electric contact, or
closes an air valve, or actuates another relay device, which sets the
precession motor rotating in a direction such as to furnish a righting
torque on the car.

d. The Artificial Horizon for Adreraft. The Sperry gyro horizon or
artificial horizon is an instrument used in aircraft to indicate the hori-
zon when it is not visible, as at night or in clouds. Such an instru-
ment is useful, because the pilot cannot orient himself with respect to
the horizon by his sense of balance or by observing a pendulum hang-
ing before his eyes in the airplane, When the plane is flying con-
tinuously in a horizontal circle at the proper angle of bank, such a
pendulum will hang in a direction perpendicular to the floor of the
airplane, and not vertically with respect to the horizon.

The instrument is shown schematically in Fig. 288. It is essenti-
ally a free gyroscope of which the gyro disk A rotates at high speed
about a vertical axis aa; the inner gimbal ring can rotate about an
athwartship axis bb and the outer gimbal ring can rotate about the
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fore-and-aft axis cc, which is tied to the airplane. The inner gimbal
ring carries a mechanism B, to be explained presently, and counter-
weights C, placing its center of gravity in the bb axis, so that the gyro
itself and both its gimbal rings are completely balanced. In the
instrument the inner gimbal ring is attached to an indicator, which is
painted to represent an artificial horizon. When the ship is in level
flight, a locking mechanism enables the pilot to lock the gyro disk in a
horizontal position, and the artificial horizon appears level. The
gyro can then be unlocked, and if the airplane then banks or climbs,

F1a. 288. The gyro horizon for aircraft is a gyroscope mounted in gimbal rings to be
free about all three axes.

the gyro disk remains horizontal, so that the artificial horizon appears
inclined with respect to the airplane. Only bearing friction will
throw the instrument off level after some time. If in cloudy weather
the pilot gets occasional glimpses of the horizon, he can lock the instru-
ment in place when the plane is level and unlock it again. But if the
horizon remains invisible for a long time, this cannot be done and for
this contingency the attachment B is provided. The rotor A is driven
by an air stream, which enters the apparatus through the hollow shaft
cc, then passes via the outer gimbal ring to the inner one through the
hollow shaft bb, and from there via ae to the rotor wheel, which has
some primitive turbine buckets cut on its periphery. The air stream,
after having done its work, is discharged at B through four horizontal
openings 90 deg apart. The detail of this is shown in Fig. 289. The
four openings are half shut off by small pendulums. When the shaft,
aa departs from the vertical by rotating about cc through a small
angle, pendulum p will open its hole wider and pendulum ¢ will close
its hole. The reaction of the escaping air stream thus exerts a couple
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about axis bb, which, by the principal theorem, will turn the gyro about
axis cc. The reader should reason for himself that the gyro should
have its IM vector pointing downward in order that this reaction torque
may make the axis aa line up again with the pendulums p and g¢.
The other pair of pendulums, r and s, comes into play when the axis aa
deviates from the vertical by a small angle about bb. Thus the axis aa
tends to seek the ‘‘vertical” as determined by the small pendulums.
These pendulums, of course, do not indicate the true
vertical except when the plane is flying in a straight

N 4] path at constant speed. The usefulness of the
s o -  instrument lies in the fact that the gyro has great
inertia and ignores quick changes of the pendulum
positions, following only their average inclinations
over a considerable time.
T A simplified construction of the gyro horizon
___LJV_;},. dispenses with the device B and depends for its
s ‘E:__L +— operation altogether on occasional resetting by the
i pilot.

e. The Precession of the Equinoxes. The preces-
F 2 sion of the equinoxes is a phenomenon in astronomy,
1a. 289, Detail of R
the mechanism B of Which was observed thousands of years ago, and
Fig. 288, showing wag explained by Newton on the basis of gyro-
our small pendu- .
lums half closing off 8cope theory deduced from his own three laws.
:‘;Z:s' sirexit pas-  (Cagual observation shows that the axis of rotation of
the earth practically stands still in space, pointing
toward the star Polaris in the sky. More careful measurements at
intervals of many years or centuries disclose that the axis of rotation
does not stand still but describes a cone, with respect to the fixed
stars, which has an apex opening of about 46 deg (the angular distance
between the two ‘“tropics” on earth), once around in 26,000 years.

For Newton’s explanation of this effect we turn to Fig. 290, show-
ing the earth in midsummer (midwinter in Australia). The earth is
attracted by the sun at the right, and the attractive force is held in
equilibrium by the centrifugal force of the earth’s orbital motion about
the sun. The attractive force follows the law F = C,/r?, and the
centrifugal force is F = Cyr (page 165). When these two forces
balance exactly for a particle at the center of the earth C, they do not
balance at points at different distances from the sum like A or B.
For points in the half earth away from the sun (at night), the centri-
fugal force is the larger of the two; for points in daylight the attractive
force is larger. Thus there is a field of small surplus forces (Fig. 291),
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being the difference between these two; directed towards the sun at
B and away from the sun at A. (A similar condition holds for the
moon’s attraction and explains why ocean tides are high twice in

n

/

F1a. 290. Centrifugal force increases with the center distance r; Newton attraction
decreases with 7; thus, if these two forces balance for a particle at the center of the earth,
they do not balance at other points.

24 hours.) If the earth were an exact sphere, these small forces would
have no resultant at all and would form a system in equilibrium. But
the earth is not a sphere; it is an ellipsoid, flattened at the poles. Thus
there is an “equatorial protuberance,” and the small forces acting
on this protuberance (Fig. 290) have a re- 0
sultant couple, directed perpendicular to the ! //
paper. This couple, by Eq. (33), is the rate /
of change of the M vector, the end point of
which will precess toward the reader out of
the paper.

Six months later the Australians have
summer and the sun is to the left of Fig. 290.
The reader should sketch the forces for him- /
self and see that the resultant couple has the / i
same direction as before. At the equinoxes, Fia. 291. The field of small
in March and September, there is no result- iorces being tl;;;ﬁ‘;‘;‘:ﬁ
ant torque. Newton performed the nec- sttractive forces and the
essary integrations of this effect in detail, ~centrifusal forces.
The period of precession, 26,000 years, was known to him, but the
amount of the protuberance, or the difference between the polar and
equatorial radii of the earth was not known in his day, so that the
calculations could not be checked. In the eighteenth century, follow-
ing Newton’s work, the lengths of a degree of arc on the earth near
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the equator and near the poles were measured accurately by several
governmental expeditions, verifying the predicted result completely.
Problems 326 to 331.

62. The Gyroscopic Ship’s Compass. The gyroscopic ship’s com-

pass is one of the most ingenious mechanical devices known and is a
fitting subject for the last article of this book. Its operation is almost
miraculous. It feels the rotation of the
earth, one revolution in 24 hours, and it
feels this rotation correctly, even when
mounted in a ship that pitches and rolls
violently in a storm. When someone tam-
pers with the compass and makes it point
in a wrong direction, the compass dis-
tinguishes between the earth’s rotation and
the ship’s motions, corrects its own error,
and after a few hours points to the true
north again. Obviously a mechanism that
can do all of this cannot be explained in a
Fro. 292. A gyroscopic disk 1€W words, and in order to understand its
mounted in three well-bal- operation we consider some preliminary
e ool T Droserves  stages before coming to the actual construc-
therefore is a primitive formof  tion of Fig. 300.
COmPpASS. First we imagine a gyroscopic disk
mounted in three gimbal rings (Fig. 292). If the base of the appa-
ratus is held fixed, the gyro axis can be made to point in any direc-
tion in space. If the three gimbal axes all intersect in one point and
that point is the center of gravity of the gyro rotor as well as of each
gimbal ring individually, and if the gyro rotor axis is a principal axis
of inertia, then no moments act on the gyro rotor. If it is set spin-
ning fast, it will therefore preserve its direction in space, independent
of the motion of the base. In a sense this device could be used as a
compass: if the gyro axis is pointed toward Polaris, it will stay there.
However, there are three things wrong with this kind of compass:

a. Tt points north, but it is not horizontal, except at the equator.

b. Friction in the gimbal bearings causes small torques, which will
gradually throw it off.

c. It is not self-correcting:

If the compass of Fig. 292 were mounted at the equator and pointed
north, i.e., parallel to the axis of rotation of the earth, it would stay
in that position indefinitely, except for bearing friction. Now let us
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consider Fig. 293, which represents the earth as seen by an observer
in space far above the North Pole. The earth rotates from west to
east once every 24 hours. If the
compass of Fig. 292 is mounted in o
position 1 at the equator, pointing Eauaior
east and horizontal, it will find it-
self 6 hours later in position 2,
pointing vertically up;after another ™ N (<4
6 hours, in position 3 pointing
west, and finally in position 4, point-
ing down. After this is under- W____ _ E
stood, we imagine our compass in
Fig. 293 started at position 1, not
pointing east as shown, but prac- Fie. 2093. The earth seen from far
tically north with a small easterly ~above the North Pole.

error. Then at 2 we have a small upward error, at 3 a small westerly
error, and at 4 a small downward error.

Next we proceed to the construction of Fig. 294, which is closer to
the actual compass than Fig. 292. The gyroscopic disk is still mounted
in the same three gimbal rings, but now a pendulous mass has been
added. When the gyro axis is horizontal this pendulous mass has no
influence, but as soon as the gyro axis has an upward deviation, the
pendulum exerts a torque, which drives the
end point of the I vector to the west.
Similarly when the It vector points north
and is dipped down slightly, the pendulum
torque drives the top of the IR vector to-
ward the east.

Now imagine that a sheet of paper is
Fia. 2904 A gyroscopic disk held perpendicular to the I or gyro axis at
b el :onf{”‘s‘;?g l;’e;‘}?:l:: a distance of several feet north of the com-
planation of the marine pass, and that we mark on this paper the
COMmPASS. point where the gyro axis intersects it.
The result is Fig. 205, showing a coordinate system (east-west; up and
down) with an origin O, and the coordinate axes marked in degrees.
If the compass (Fig. 294), still at the equator, is started with an easterly
deviation of 4 deg from the true-north horizontal position, the gyro
axis intersects the paper at point A. The rotation of the earth, by
Fig. 293, introduces an upward deviation, so that the axis moves to
point B of Fig. 205. Then the pendulum torque takes hold and drives
it to the west. We thus reach point C, where the tangent to the curve

=]
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is horizontal, because there is no longer an easterly deviation at that
point. The pendulum torque continues its westward push, so that
soon there is a westerly deviation, which by the earth’s rotation causes
a downward motion. Thus we arrive at D, then at E and back to A.

C
B

e 7 1 . {Easf

\

Down

Fra. 295. Motion of the end point of the angular momentum vector of the compass
Fig. 294.

The period of this elliptic motion depends on the intensity of the
pendulum torque, and in an actual compass it is so adjusted that one
full cycle takes 84 minutes, which is the period T' = 2r \/R/g of a
simple pendulum with a length equal to the radius of the earth. The
practical reason for this particular relation is too complicated for
explanation in this text.

Thus we see that the compass of Fig. 2904, when placed at the equa-~
tor with a deviation, will move around the desired true-north horizontal
position, but will never reach it: it
is not yet a satisfactory compass.
In order to make it satisfactory,
the diagram of Fig. 295 has to be
modified to Fig. 296, by the intro-
Fic. 206, Modification of the motion Guction of & “damping torque”
diagram Fig. 205 by the introduction into the compass. The difference
of damping. between the two figures can best
be seen at point C. In the first figure the curve there is parallel to
the east-west axis; in the second figure it is not. In the first figure a
deviation causes a reaction pushing the compass in a direction 90 deg
from the deviation. In the second figure this is still so, but in addition
there is a reaction diminishing the original deviation directly. At
point C in Fig. 296 the deviation is upward only, but the curve at C
has a westward as well as a downward slope. In this manner the
ellipse of Fig. 295 is transformed into the spiral of Fig. 206. The
latter diagram describes a satisfactory compass, because a deviation
gradually corrects itself.

In order to introduce the damping torque into the mechanism, Fig.
294 has to be modified radically into Fig. 297 in which the gyro rotor
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4 is mounted in a casing B, which is held in a gimbal ring ¢ by means
of two hinges. The ring C is suspended from a piece D by means of a
flexible wire or very thin rod. This part D is known as the phantom
element. It in turn carries the pendulum E, which thus is not carried
by the gyro rotor directly. The pendulum E is coupled to the rotor
casing B by means of a pin F, which is drawn in eccentrically, but which
for the moment may be considered to be just in the vertical center line.

Fia. 297. Third step in the explanation of the gyroscopic marine compass.

The phantom element rests on a piece G through a ball bearing. The
piece G is carried through a complete set of gimbal rings by the ship.
The connection between E and B through the pin F is such that the
pin is rigidly built into E but rides in a long slot of B, such that the
force between F and B can only be perpendicular to the paper. If
for any reason the assembly ABC tends to swing to the right in the
plane of the paper, this can take place without any restraint on
account of the slot. If on the other hand ABC tends to swing out of
and into the paper with respect to EF, the pin couples the two motions.
Then there is another thing yet. If the assembly ABC turns
(about a vertical axis) with respect to D, twisting the supporting wire,
an electric motor is started which turns the phantom D on its ball bear-
ings on G so as to set it in line with ABC again. Thus the phantom
always follows the rotations of ABC about the vertical axis and no
twist in the wire can be permanent. This turning is regulated by
means of a pair of electric contacts and is so sensitive that the follow-
ing action is started as soon as the twist between C' and D is 14 deg.
It is easy to see that the compass with the ceniral pin F acts exactly
like Fig. 204. When it is deviated east, the earth tips the point of
the M vector of A upward. Then the casing B pushes against the
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pendulum pin F, and a torque is created on A about a horizontal axis
passing through the two bearings of B. This torque has exactly the
same sense as the gravity torque of Fig. 294. The apparatus, although
much more complicated, accomplishes exactly the same thing as
Fig. 204.

But it is now capable of introducing a damping as specified in
Fig. 296, simply by setting the pin F somewhat to the right shown in
Fig. 297. When that is done, the force between F and B (which is
perpendicular to the paper) not only gives a moment about the hori-
zontal axis but also about the vertical center line AE. In the case
of Fig. 297 the main I vector points into the paper away from the
reader. When the point of that vector is deflected upward, the casing
B pushes the pin F into the paper and consequently F pushes B out of
the paper. This force on B gives a couple about the vertical center
line represented by a vector pointing downward. Thus an upward
deviation of the compass causes a downward precession as desired.

The pendulum E of Fig. 297 can be made of an effective length of
6 in. or so and thus has a natural frequency of several cycles per second.
If the ship rolls (with a period of 525 sec., the larger value for larger
ships), it is clear that the pendulum E will follow the roll and react on
the compass. Whether this is serious or not we do not discuss; let it
suffice that under certain conditions it may cause wrong readings.
Therefore it is desirable to have a pendulum E that will not follow the
roll of the ship. This can be done by making the natural period of the
pendulum very long, say 5 minutes. For that it is necessary to make E
extremely long, about 250,000 ft. Evidently this is mechanically
impossible, but first it should be explained that if such a pendulum
existed, it would not respond to the roll of the ship with a period of
from 5 to 25 sec.

Consider a pendulum of 3-ft length (with a period of about 1 sec).
Apply to its bob a force alternating at the rate of say 30 times per
second. The bob is so inert that it cannot move fast enough for
this force; it will practically stand still. The conditions with a
250,000-ft pendulum (with a period of 5 minutes) acted upon by a
force of a period of 10 sec or so are similar. Such a pendulum is
known as a ballistic pendulum. The name ‘“ballistic’’ is frequently
applied to apparatus that is so sluggish that it cannot respond to
quick impulses (for example, the ballistic galvanometer).

Now a pendulum of 250,000-ft length cannot be made. There-
fore we abandon the pendulum and go to something else that will
accomplish the same purpose. In Fig. 298 is shown a bicycle wheel
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pivoted about its center C. It carries a glass vessel attached to it in
such a manner that its center of gravity is located in C. The vessel
is partly filled with water such that the center of gravity of the water
also coincides with C. Evidently the wheel is now in equilibrium.
Let us tilt it to the left. Then water will low from the vessel R
to the vessel L, and the center of gravity of the water mass is now to
the left of C. There is a moment tending to tip the wheel still
farther to the left. The wheel is unstable. If a solid pendulum is
turned a small angle from its equilibrium position, a couple is set up
tending to restore the pendulum to its original position of equilibrium.

S
NY

Fia. 208. A bicycle wheel with communicating vessels partly filled with a liquid tends
to be unstable, like a ship with shifting cargo. It is & model of the ‘“mercury
ballistic.”
There is a positive restoring couple. In the case of the wheel of Fig.
298 there is a negative restoring couple. If a mass were attached to
the bottom of the rim of the wheel, that would give rise to a positive
restoring couple, which may or may not be larger than the negative
couple of the water for the same angular displacement. Then the
combination is stable in the first case and unstable in the latter case.
Now we modify Fig. 297, by eliminating the weight of the pendu-
lum E, and replacing it by the vessels of Fig. 298. Two vessels filled
with mercury are solidly attached to the pendulum ring E, one in
front of the paper and the other behind it. These two reservoirs are
connected to each other by a tube of very small diameter, running
perpendicular to the paper. This is done in such a manner that the
center of gravity of the ring £ plus the empty vessels lies in the hori-
zontal bearing axis of E. Moreover the center of gravity of the mer-
cury (when in the equilibrium position) also lies in the bearing axis.
On account of the small diameter of the connecting tube, the mercury
flows very slowly from one vessel to the other when tilted. In fact
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during a rolling period of the ship (approximately 10 sec) the transfer
of mercury between the two vessels is insignificantly small. In that
case the ballistic acts as a solid body, and no restoring torque is
exerted, because the pendulum E is in indifferent equilibrium. For
very much slower motions however (like the rotation of the earth) the
mercury can flow freely from one vessel to the other, and in that case
produces a negative restoring torque, which will precess the gyroscope
to east or west in the same manner as the pendulum of Fig. 294 or 297.
Only the direction of the precession is reversed, so that the I vector
now must be made to point south instead of north.

Figures 299 and 300 are reproduced from a pamphlet of the
Sperry Gyroscope Company and represent the two compasses both

......

.
BSSTTTerT

F1a. 209. The gyrocompass with a phys- Fig. 300. The final form of the Sperry

ical pendulum, gyrocompass, incorporating a mercury bal-
listic instead of a pendulum.

seen from the south. In the pendulum compass the gyro rotation is

clockwise giving an I vector into the paper toward the north, whereas

in the mercury ballistic compass the rotation is counterclockwise

giving an I arrow towards the reader, towards the south.

This explains the principal features of the gyroscopic marine com-
pass when operating at the equator. The behavior of the compass
at latitudes different from the equator is similar, but its detailed
explanation would lead us too far. The reader is referred to a book
entitled “The Theory of the Gyroscopic Compass,”! written by A. L.
Rawlings, the inventor of the mercury ballistic of Figs. 298 and 300.

Problems 332 to 334.

1The Macmillan Company, New York, 1944,
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1. In the figure, let the horizontal distance between the two pulley centers
be 2I, let the pulleys be at equal height, of negligible diameter, and let the
height of the knot A under this horizontal line be h. Let further Wy = W,,
while W, is different. Derive a formula showing the relation between the
ratio A/l and the ratio Ws/W,, and plot a graph of this relation.

2. If W, =31Ib, W. = 41b, and W5 = 51b, plot the position of the string
graphically, and find the angle P1AP,.

3. If W, is made 101b and we want to make ZP,AR = 30° and £P,AP, =
90°, what are the weights W, and W,?

4. Make W, = 20 Ib, W, = 10 Ib, and W; = 25 Ib. By graphical con-
struction‘and using a simple protractor, find the angles of the string.

n;

ProsLEMs 1 to 4.

8. The four strings of a violin are strung over the bridge B at an angle of
about 20 deg. The pressure of the bridge on the front panel of the fiddle is
about 20 Ib.

D P - J— —Tppe

il

" PROBLEM 5.

a. Assuming all strings to have the same tension, what is that tensile
force?

b. The free length BC of the string is about 12.5 in. What is the force
required to pull up one string 34 in. at a point D midway between B and C,
assuming that the force in the string is not changed by it?

341
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6. A square plate of 1-ft side is subjected to five forces, applying at the
corners, the mid-points, and quarter-length point of the sides, as shown.
Determine the location and magnitude of the resultant.

500 /500
6‘ r-]
500 i

300

DEPYASE. X71
300

PROBLEM 6,

7. A twin-screw ocean liner arriving in port is being eased to dockside by
two tugs pushing against the side, while one propeller is pushing forward and
the other one is pulling aft. The forces shown in the diagram are expressed
in tons of 2,000 Ib each. Find the resultant force on the ship and the point
where this resultant intersects the center line.

e 40"
125
y20'
750

PROBLEM 7.

8. A heavy barge in a canal is being pulled by two towlines, powered by
horses, and is pushed from the aft end by a man handling a long pole. One
horse is stronger than the other; all forces are at 30 deg with respect to the
center line of the barge. Determine the resuitant force.

Yo

100/6.
100 /b. oo,

’
'20

k-~ 100"~

250 /6.

ProBLEM 8.
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9. A weight W of 100 b. is supported by a system of wires as shown. Find
the tension T, T2, T3, and 7'y in the wires of the system.

1
8 2
7 = 3
6
4
=/00 /b. u'-
ProsrLEM 9. ProBLEM 10.

10. In the design of an eight-cylinder Diesel engine it is necessary to
evaluate the resultants of a star of vectors of different magnitudes but equi-
angularly spaced. Sometimes these vectors are negative, t.c., pointing in a
direction opposite to that shown in the diagram. Find the resultant for the
two following cases:

No. 1 2 3 4 5 6 7 8
Case a 10 9 8 7 5 4 3 2
Case b 10 4 2 -2 -4 0 5 2

11. A boom AB, hinged at the bottom, is 10 ft long. At B a rope pulls at
30 deg with a force P = 1,000 Ib.

a. What is the moment of force P about the point A?

b. What is the moment of the weight force W about A?

¢. If these two moments are alike, what is the weight W?

)

100 /6.

200 /6.

ProBLEM 11, ProBLEM 12,

12. Two wheels, one of 8-in. radius and another of 6-in. radius, are rigidly
attached to each other concentrically. There are three forces acting on it,

all tangentially as shown.
a. What is the moment of the three forces about the center O?

b. What is that moment about point A?
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13. An old-fashioned overshot waterwheel carries on its periphery
wooden buckets, which are filled with water on the descending side and are

ProBLEM 13.

empty on the ascending side. Let the total number of buckets be 16 and the
weight of the water in the buckets be as follows:

No. 1 2 3 4 5 6 7 8 et
Weight (b) ©O0 50 75 75 76 50 25 0 et

Further let these weight forces be acting at a radius of 8 ft from the axle and
at the angles:
No. 2 3 4
Angles (deg) 10 323 55,
and so on, each subsequent weight being 22.5 deg further along the periphery.
Calculate the moment exerted by the water weight forces about the axle.
14. A weightless horizontal bar is
pivoted at one end O and carries a load
W = 1,000 lb at quarter length. The
bar is held in place by a rope at theend, | 307
inclined at 30 deg with respect to the bar.
Find the tensile force P in the rope from %
the statement that the moments about O -G~
of P and W are equal and opposite.
15. Three boys are playing in a rowboat. One rows, pushing the boat
forward with two forces of 20 Ib. One pushes a boat hook against the shore

0 /5.

PROBLEM 14,

20/b.

ProBLEM 15.
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with a force of 80 b, and the third one push-pulls against a dock exerting a
torque of 30 ft-lb. Find the magnitude, location, and direction of the result-
ant force.

16. On an elevator hoisting drum of 2-ft diameter is acting a tangential
force P = 1,200 Ib (the weight of the elevator cab) and a couple M = 1,200
ft-lb (the torque in the shaft of the electric drive motor). What is the
magnitude and the location of the resultant force acting on that drum?

o

ProBLEM 16.
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ProBLEM 17. ProBLEM 18,

17. A crowbar finds a solid support at S; a load L is to be lifted by a man’s
push at F. If that force F is 100 lb, what load can be lifted for the dimensions
shown?

18. A nuteracker is pinched together with a pair of forces of 18 Ib each.

a. What is the force exerted on the nut?

b. What is the force in the link A between the two levers of the nutcracker?

19. A scale consists of a horizontal bar, carrying a weighing pan at one
end, and a weight W, capable of sliding <l\

1876,

[

along the long end of the bar. With an

empty pan (W, =0) and the weight fe.______ /. >

W, removed, the bar is in horizontal r s >‘"a")l

equilibrium. !

a. When weighing an unknown ﬁﬁj{? A
n;

quantity W, what is the relation between
z and W,?
b. For Wy =1 1b, and ¢ =1 in,,
b = 12 in., what is the maximum capacity
of the scale, and how is the long arm to be marked?
These scales were extensively used by the Romans; they were excavated
at Pompeii and are on display in many museums.

PropLEM 19,
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20. A safety valve on a steam boiler has a diameter d and a steam pressure
p. The horizontal arm itself weighs w Ib, concentrated at distance ¢ from the
valve.

a. What is the value of W required?

b. Substitute the numerical values: p = 200 lb/in%,d = 2in.,a = 12in.,
b=3in,c=5in.
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Pnonm;a 20.
21. If the load carried in a wheelbarrow is 120 lb, what is the load P the

man carries in his hands, and what is the force transmitted by the wheel to the
ground?

P
/ = 61 P
W -
I
fe- 2 ’i-L----.zs"!--.— -------- 60" - Je/.fi
ProOBLEM 21. ProBLEM 22.

22, An oar in a rowboat, when being pulled, does not really stand still;
its end slips through the water somewhat. However, the motion through
the water is very slow, and to all intents and purposes the end of the oar finds
a point of solid support in the water. If the oarsman pulls with a force of
50 Ib, what is the force exerted by the water on the oar tip? And what is the
force exerted by the oarlock on the boat?

__________ [ 2%
28. What is the force P required Jt‘: ¢ i 1
/

to keep the double lever system in p ; A .
equilibrium under a load of 300 Ib? LT o 1 7
Neglect the weight of the levers V%m

themselves. J

PrOBLEM 23.
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24. A machine element in common use is the bell crank, so named because
our grandparents’ doorbells were operated by it.

ProsrEM 24,

a. If the two arms are perpendicular to each other and the pulls T'; and T'»
are perpendicular to their arms, what is the relation between T4, T',, a, and b
for equilibrium?

b. In case these angles are all different from each other, state which dimen-
sions of the figure should replace a and b, if the answer to the previous question
is to apply here without change.

26. A ship’s ladder is supported at the top by a hinge H and at the bottom
by a rope with tension 7' pulling at
30 deg with respect to the vertical.
The weight of the ladder is 1,000
Ib and is considered to be concen-
trated at the center. A man weigh-
ing 200 lb stands at one-fifth
distance from the bottom. The
ladder itself is inclined at 45 deg.
Calculate the pull in the rope and
the force at the hinge. Prosrmy 25.

26. A jeep is being used to pull out stumps. Find the vertical load on
each axle when P = 1,500 lb, and the weight of car and driver is 2,500 1b.

ProBLENM 26.
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27. The figure shows how a weight can be raised by an ideal frictionless
weage.
dag. Find the relation between the load W, the applied force F, and the wedge
angle a.
b. Find the forces transmitted by the three rows of balls. _
¢. For what angle o can a weight W be raiged that is 10 times as large as
the applied force F?

ProBLEM 27, ProBLEM 28,

28. The weight W is supported on a frictionless inclined plane « by a
flexible cable, which passes over the frictionless pulley P and is fastened to the
hanging weight W,.

a. Find the general relation between Wy, W,, and a.

b. For a = 30° and W, = 50 lb, what is W,?

29. The crane truck shown weighs 7,000 1b.

a. What is the largest purely vertical load L, the crane can safely handle

without tipping the truck?
Za-TaToI

b. What is the largest 30-deg load La?

~
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PROBLEM 29, ProsrLENM 30.

30. A ladder is hinged to a vertical wall and is supported on the floor by a
frictionless roller, as shown. If the ladder’s weight of 75 Ib can be considered
to act at the center, and if a 150-lb man stands on the quarter-length point
from the bottom, find the reaction force from the floor on the ladder.
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31. A toggle joint is an element of mechanism whereby a large force P
can be exerted by a much smaller force Q. Analyze this system and find the
relation connecting &, P, and @, if friction can be neglected.

Q

ProBLEM 31.

32. A heavy uniform rope, 20 ft long and weighing 20 lb, is slung over
a smooth pulley 1 ft in diameter and carries the weights W; =10 1b and
W, = 20 lb. Find the equilibrium position of the system in terms of the
distance =.

r -------  — ah ----/oi-—»1l

& o Q
1
x
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ProBLEM 32, ProBLEM 33.

33. The Dutch canal bridge carries a counterweight @ of 3,000 Ib. The
weights of all the members can be neglected in comparison with the weight
of the bridge deck itself, which is 4,000 Ib.

a. Find the necessary pull in the counterweight rope in order to just begin
lifting the bridge.

b. What is the pull in the rope when the bridge deck is up 30 deg?

Neglect all friction.

34 The lifting tong shown is suspended from a chain attached at D. The
pivot blocks G and H grip the load W, supporting it by means of friction.
The bell cranks CAG and EBH pivot about the pins A and B on the crossbar.
Assuming no friction in the pivots and neglecting the weight of the mecha-
nism, find the force in the crossbar AB and the gripping force on the load.
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The belleranks are symmetrical about their centers; the lines CG and EH
are vertical, and the dimensions are CG = 40in.,CD = DE = 18in.,, DF = 3

ProsLzM 34. ProprEM 35.

36. A tackle consists of an upper fixed pulley and a lower floating one, both
without friction in their axles. The floating pulley carries a weight W.
What are the tensions T, T's, and T's in the three sections of rope?

36. A simple hoist carries a load P 1b as shown. It is mounted in bearings
at A and B, which are capable of taking horizontal forces only. It is mounted
at C on a ball, which can take a vertical force only. Find the reactions at
A, B, and C, expressing them in terms of P and of the dimensions shown.

ProBLENM 36. ’ ProsrLENM 37
87. The diagram shows a simplified lazy-tongs linkage, of which the
members are supposed to be weightless and pinned together by frictionless
joints. Analyze the system and determine the ratio P/W,
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38. Two 20-ft beams are laid across three supports 4, B, and € as shown.
What is the largest load X that can be applied to the left beam without upset-

/2% 8" 10 »le-5L ity
-2 o ---8 oo 10 - ore- 57 -5-»»1
L
A B Ae

/ / /.

PropLEM 38.

ting the system when the right beam is supporting P = 600 1b? Neglect the
weight of the beams.
25/. 25/

39. The iceman cometh, carrying a 50-lb !
cake with ice tongs, having 25-lb vertical -x——
loads in each of his hands.

a. Calculate the normal force with which
the points of the tongs dig into the ice. X N

b. What force is transmitted by the pin
connecting the two arms of the tongs?

Lo

SN

PrROBLEM 39.

40. The iceman is getting out of date. For us moderns ice grows in little
cubes. The sketch shows schematically a lever system used in one of the
standard home refrigerators for cracking ice cubes out of the container. The

.

)
P

ProBLEM 40.
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piece ADEF is an aluminum plate about 1 in. high, 8 in. long, and of negligible
thickness. It has seven slits cut in it almost to the bottom. In these slits
fit aluminum cross plates of 2-in. length and 1-in. height, and the whole sits
loosely in a tray for 16 ice cubes, indicated by the dotted line. On the center
plate is attached the lever AB and the strut CD, with “hinges” at A, C, and D.
The pivot at C is collapsible so that when the tray is in the refrigerator, the
levers AB as well as CD lie flat and are erected as shown only when the cubes
are to be taken out., When one presses down with the thumb on B, the
strut CD is put in compression. This causes tension in the “rod” AD, which
is the top line of the center plate ADEF. Since EF cannot stretch, but AD
can stretch (on account of the slits), the entire plate ADEF bends and humps
up in the center, cracking the ice cubes loose.

Find the tensile force in AD (and hence the equally large compressive force
in EF), expressed in terms of P, I, and k.

41. The diagram shows a scale, which is in balance in the position shown
due to the fact that W, is slightly heavier than W, The weight of the balance
arm itself is w and is assumed concentrated at a point G at distance a below
the pivot point O.

a. Determine the relation between the angle « and the difference W, — W,
in terms of the dimensions.

b. The sensitivity of the scale is great when the angle « is large for a small
unbalance W, — W.. How do the dimensions have to be chosen to make a
very sensitive scale?

a -
Yw
PROBLEM 41, PROBLEM 42,

42. A flat rectangular plate of weight W and dimensions 2a and 2¢ is
resting with two frictionless wheels against a vertical wall, distance b from the
edge of the plate. The wheels are distance 2¢ apart, and the plate is held
by a rope of length I, attached to a point at distance d from the edge of
the plate. Since the wheel axles are frictionless, the forces from the wall on
the wheels and hence on the plate are supposed to be perpendicular to the
wall.
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a. Find the rope tension and the two wheel reaction forces.

b. For what relation between the dimensions will the lower wheel leave
the wall?

43. What horizontal force P is necessary to pull an 18-in., 300-1b lawn
roller over a 1-in. plank?

/8" P
J00V/b. ; __L,//
12, 24 ¥ 7
ProBLEM 43.

44. A bascule bridge consists of a tower AB, a bridge deck pivoted to the
tower at A, two link bars BC and CD, pivoted together at the ends, carrying
a counterweight Q. Let the weight of the bridge deck be W, concentrated
at a point as shown; and let the weights of the link bars themselves be negli-
gible. The counterweight is a large block of conerete having a specific weight
of 2.5.

a. What volume of concrete at Q is required to keep W = (short) 10
tons in equilibrium?

b. Answer the same question for the case that the bridge deck is tipped up
30 deg.

PROBLEM 44.

46. A set of meshing spur gears of radii 71 and r: is mounted in bearings
B, and B,, which are bolted to the ground by means of a frame. A moment or
torque T, is applied to the pinion shaft, and the system is held at rest by
another torque T,
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Calculate T',, the force between the pinion tooth and the gear tooth, the
forces between the shafts and the bearings B, and B., and finally the moment
transmitted by the frame to the ground.

7
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PROBLEM 45.

46. The weighing platform of the Toledo scale (“No Springs; Honest
Weight for a Penny; Your Money Back if You Guess Right”’) is supported at
four points A by two levers L, and L, which are pivoted about horizontal axes
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PrOBLEM 46.

BB. The levers L, and L. (roughly triangular in shape) are pivoted together
in their center and transmit their combined force through a short vertical link
to a third lever L,, pivoted at C.

a. Study the system and explain how the combination of levers acts as an
“equalizer” in the sense of Figs. 26 and 27 (page 30), so that the force P is
independent of the location of the load W on the platform.

b. Determine the relation between W and P, assuming that W includes
the weight of the platform itself.
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47T. The sketch shows the pendulum system of a Toledo scale, and the
bottom force P in this sketch conneets to the force P of Problem 46. The
force P connects to the center of an “equalizer lever,” and the two equal half
forees are transmitted by flexible steel bands a, which wrap around the periph-
ery of two circular segments b, having their centers at C. The centers C
carry smaller circular segments d, on which flexible steel bands ¢ are wrapped,

L2 &
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ProsLEM 47.

carrying the load up to ground, i.e., to the top of the housing of the scale
indicator. The centers ¢ are not fixed; they are “floating” and held in
position only by the forces in the steel bands a and e. The pendulums W are
integral with the two segments and C.

a. Deduce a relation between P, W, I, I, and s, expressing the equilibrium
of the floating pendulum lever.

b. Examine the system and recognize that it is drawn in the position of the
maximum possible load P, Sketch the position of the pendulums for a load P
half as large.

1000/6.

48, Find the reactions at the
supports of the two-bar linkage (or
hinged arch) under the influence of
three forces.

PROBLEM 48.
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49. A two-bar linkage is loaded with three equal forces of 500 1b, one in the
center of one of the bars, the other two at the third-length points of the other
bar. Determine the reactions on the ground supports and also the force
transmitted by the center hinge.

ProsrEM 49. Prosrzm 50.

60. A three-bar linkage consisting of three bars of equal length is loaded by
five forces, of which four are given and the fifth one X is unknown. Deter-
mine the value of X for equilibrium and also the ground support reactions
and the forces transmitted by the intermediate hinges.

61. Two of the bars of the three-bar linkage shown are subjected to forces
at their mid-points. What is the force X required for equilibrium, and what
are the ground support reactions?

-—-—a -_-L_-a-_ .

----- 2 =-m-rte-] ’-»«ﬂ-—l
ProsLEM 51, ProprLon 52.

62. A structure consists of two circularly curved beams hinged at
4, C, and B, and is loaded with forces of 100, 200, and 400 Ib as shown. Find
the reactions at A and B.

63. A door of dimensions 3 ft by 6 feet is hung on two hinges, 4 ft apart
and 1 ft from top and bottom. The door weighs 30 b, and its weight is
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uniformly distributed over its area. Determine the forces exerted by the
door on the hinges.
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ProBLEM 53. ProsLEM 54.
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B4. A curve, drawn in the plane of the paper, is revolved around an axis
AA, also lying in the paper, thus forming a surface of revolution. Prove that
the area of this surface equals the product of the length of the curve and the
periphery 2xr of the circle described by the center of gravity of the curve.
This is the first theorem of Pappus, a Greek mathematician who lived in
Alexandria, Egypt, about A.p. 400.

65. An area A in the plane of the paper is revolved about an axis also
lying in the plane of the paper, thus generating a toruslike volume. Prove
that the volume is equal to the product of the area and the periphery 2xr of
the circle described by the center of gravity of the area. This is the second

theorem of Pappus.
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ProsLeM 55.

56. A uniform flat plate is made up of a square and a 45-deg triangle with
dimensions & and 2a as shown. Find the center of gravity, expressing it in
terms of the z and y coordinates shown.

Y
a

2a

PROBLEM 56.
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67. Find the location of the center of gravity of a piece of angle iron, 6 ft
long and of a cross section as shown.

68. Determine the location of the center of gravity of a solid half sphere
by cutting it into thin slices parsllel to the meridian plane.
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PronueMm 57. ProsLeM §59.

69. A composite beam consists of a square wooden section a of specific
gravity 0.8, to which is screwed an angle iron of wall thickness a/8 and of
specific gravity 7.8. Find the location of the center of gravity.

60. Find the location of the center of gravity of a flat plate consisting
of a triangle and a half circle.

61. Find the center of gravity of the body of revolution, consisting of a
cone and a half sphere, generated by rotating the plate of the previous problem
about its axis of symmetry.
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ProBrEMS 60 and 61. ProBLEM 62.

62. A crank consists of two cheeks and a crankpin with dimensions as
shown. Approximate the cheeks by rectangular parallelepipeds by laying it
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out full scale on a sheet of paper and sketching in the straight line (see Fig. 43,
on page 41).

a. Determine the location of the center of gravity.

b. Calculate the error in that location caused by a shift of 0.01 in. in the
location of the straight line replacing the bottom circular ares, and also for a
similar shift for the upper circular arc.

63. A block has the shape of a truncated (cut off) four-sided pyramid.
The base has sides ¢, the top has sides /3, and the height of the block is 2h/3.

a. Find the height of the center of gravity above the base.

b. Generalize the answer to the case of truncated cones of any arbitrary
base shape.
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ProBLEM 63. ProBLEMS 64 and 65.

64. A semicylindrical trough of uniform wall thickness weighs w; Ib per
linear foot in the direction perpendicular to the paper. At one edge it carries
a linearly distributed load of w:lb per ft. Determine the relation between
the ratio w,/w. and the angle of inclination « when the trough rests on a
horizontal plane.

656. A semispherical shell of uniform wall thickness and total weight W,
carries a concentrated weight W, at one point of its periphery. Find the
relation between the ratio W,/ W, and the angle & when resting on a horizontal
plane.

86. Verify Pappus’s first theorem (Problem 54) in connection with the
relation between the area of a sphere and the center of gravity of a heavy
semicircular are.

87. a. From the known formulae for the volume of a sphere and the area
of a circle, derive the expression for the location of the center of gravity of
a semicircular flat plate by means of Pappus’s second theorem (Problem 55).

b. Verify Pappus’s theorem in connection with the volume of a cone and
the center of gravity of a triangle.
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68. A tank contains water 10 ft deep at its deepest point. The dimension
perpendicular to the paper is also 10 ft so that the free water surface is a 10-ft
square. In the bottom it contains a 45-deg trap door, hinged at the top and
laid against a lip at the bottom. Assuming no leakage and no friction, and
water weighing 62.4 1b/cu ft, find the forces at the hinge and lip.
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ProsrEM 68. PROBLEM 69.

69. A coal dump car has two trap doors in the bottom, hinged at A and
held at B by bolts. When the bolts B are withdrawn, the doors swing down
to C and the coal falls out. The length of the door is 4 ft; the depth of coal,
6 ft. As an engineering approximation, assume that the coal acts as a fluid of
specific gravity twice that of water, and let the width of the car (perpendicular
to the sketch) be 6 ft. Calculate the total force carried by the bolt (or bolts)
at B.

70. Concrete dams are sometimes designed as ‘‘gravity” dams. The
assumption is made that the block of concrete rests loosely on the ground and
that the water pressure acts on the back side of it. The water is not supposed

4——6-—1
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PropLEM 70.

to penetrate under the dam, so that the pressure on the ground under the dam
is due to its weight. Assuming that the specific gravity of concrete is 214
times that of water, and considering the simplified case of a dam of constant
width b, calculate the necessary width b in order that the dam not tip over
about its downstream edge.

71, As an idealization a little closer to the truth, consider a dam of trian-
gular cross section loaded with water all the way up to the top. Further
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assume that the ground under the dam is porous and that water slowly leaks
under it, giving a water pressure falling off linearly under the dam from the full
pressure on the upstream side to zero on the downstream side.

a. Calculate the minimum value for b/h for which the dam can stand
without tipping over on its downstream edge.

b. Sketch a dam cross section of more reasonable shape, and assuming
leakage at the bottom, sketch the three forces acting on the dam and express
the condition for equilibrium in a sentence.
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ProsLEM 71,

72. A culvert of diameter d is built under a roadbed and is covered with
earth to a depth & as shown.

a. Assuming that the earth acts as a fluid of specific gravity ¥ = 234 Ymater,
calculate the total vertical force on the culvert. (The pressure varies with
the depth, and the vertical component of this pressure varies with the angular
location on the semicircle. Hence this is a problem in integration.)

b. Substitute numbers as follows: d = 6 ft; h = 6 ft.

]

ProBLEM 72,

73. In the example of Fig. 46 (page 44) let [ = 12 ft, w, = 20 1b/ft,
P = 1,000 lb, and k = 100 1b/ft/in. At what distance b from the right-hand
end can the load P be placed so that the left-hand end of the beam does not
lose contact with the ground?
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74. A hydraulic elevator is operated by a pump
furnishing oil under pressure to a well, into which
a plunger fits with some clearance. The elevator
cab is shown almost in its highest possible posi-
tion; the plunger and the well are somewhat
longer than the possible vertical travel of the
elevator. The loaded cab weighs 8,000 lb; the H
plunger weighs 100 1b/ft; the vertical travel is 30
ft; the plunger diameter is 10 in., and the specific _
gravity of the oil is 0.9. Calculate the pump pres- 1' r
sure required for equilibrium in the bottom and gy ,
top positions of the cab. Neglect friction. |

I _

PROBLEM 74,

76. A ship of 10,000 tons (“long” tons of 2,240 1b) dead weight has a water-
line cross-sectional area of 12,000 sq ft. When it passes from a fresh-water
harbor into the ocean with salt water of a specific gravity of 1.02, does it sink
in deeper or less deep and by how much?

76. A container is half-filled with mercury and with water above the
mercury. A rectangular steel block is floating in it. What percentage of its
total height will be in the water? The specific weight of mercury is 13.6; of
steel, 7.8; and of water, by definition, 1.0.
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ProBLEM 76. ProsLEM 77,

77. A ship, idealized in its submerged part as a rectangular parallelepiped
of depth d and breadth b has its center of gravity in the water line and in the
vertical center line of the ship. Due toaload redistribution inside, the point G
is shifted sidewise with respect to the ship by a small distance §. As a result
of this the ship will incline by the small angle a. Derive the formula relating
a to § and the dimensions b and d.

78. A cylindrical container of cross section A is filled with water to a
height H above the bottom. In it floats a cylindrical block of ice of cross
section a (necessarily smaller than A) and height &, of which 0.9% is immersed
and 0.1% protrudes above the water.
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The ice is allowed to melt completely. What is the rise (or fall) of the
water level H?

79. A true perpetual-motion machine. A rectangular box carries in it a
circular cylinder pivoted at both ends, so that it can rotate inside the box.
The box is divided into halves by a vertical partition. It is filled on one side
with mercury, on the other side with water; the joint between the partition
and the cylinder is leakproof as well as without friction. The inventor states
that the buoyancy of the mercury acting on the center of gravity of the sub-
merged half cylinder, being greater than the water buoyancy on the other
side, causes a large unbalanced torque on the cylinder, which can be used to
raise weights outside the box by means of a pulley.

a. Explain what is wrong.

b. Figure the force on the pivot.

PrOBLEM 79. PropLEM 80.

80. The figure shows a balsa-wood float, such as was standard equipment
aboard ship during the war for the purpose of lifesaving in case of shipwreck.
The float has the dimensions shown and weighs 270.4 1b or 10.4 1b per sq ft
area. It floats in fresh water of 62.4 Ib/cu ft.

a. What weight can be placed at A so that the end B is just dry?

b. If 300 1b is placed at A, how far will B be above the surface?

Hint: Of the 10-ft length let x ft be wet and (10 — z) ft dry. Solve the
cubic equation for z by trial and error.

81. A truss is loaded by two forces P as shown. Find the forces in the
bars 1, 2, 3, and 4.
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ProsLEM 81.
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82. A railroad flatear, roughly speaking, is a long beam, supported on
wheels at its ends, carrying a load between the wheels. In order to increase
the carrying capacity of the car, it is often reinforced by tension bars below it.
The figure shows this in idealized form. The upper bars are supposed to be
the bottom of the flatear, and for the purpose of this analysis are considered to
consist of three pieces, each I/3 long, hinged at their junction points. The
loading is as shown. Note that the truss so formed is not a rigid one. It
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ProBLEM 82.

can be made rigid by adding a diagonal in the central rectangle. With this
diagonal absent, the truss can support only symmetrical loadings (for which
the force in the diagonal bar, if existing, would be zero). In an actual freight
car, unsymmetrical loadings are carried by virtue of the fact that the upper
member is not hinged at the two intermediate points but is continuous. Find
the bar forces in the idealized system sketched.

83. A roof with a 30-deg slope is supported by a truss as shown. The
joints on top are 3 ft apart. The truss is loaded by equal vertical loads of
1,000 Ib at each joint. Determine the bar forces in section AA.
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ProeLEM 83. ’
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84. Complete the dis-
cussion of page 55 by
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PronrEM 84,
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856. Complete the discussion of page 56 by calculating the reactions and
the forces in all the bars by the method of sections.
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ProsLEMS 85 and 86.

86. Construct the Maxwell-Cremona diagram for the crane truss of
page 55, and check the results against those of the previous problem.

87. A saw-tooth factory roof truss consists of 11 bars. The three top
stringer bars are of equal lengths and are perpendicular to the three equi-
distant and parallel uprights. The longest of these three uprights, i.e., the
left one, has the same length as one of the three horizontal bottom stringers.
The four loads are vertical, and each is equal to P. Construct the Maxwell-
Cremona diagram and state in which bar the maximum force appears.

ProBLEM 87.

88. The roof truss shown has its nine upper joints at equal distances apart
horizontally. The upper stringers, the four bars in the skylight, and the
few bars near the supports are all at 30 deg with respect to the horizontal.
The truss is loaded by nine equal and equidistant loads P.

Start the construction of a Maxwell-Cremona diagram from the left support
and carry it through 5 joints. Then caleulate the forces in section AA by the
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method of sections and check the results against the Maxwell-Cremona
answers.

Al

ProsLEM 88.

89. A crane in a coal storage yard runs on two rails 12 ft apart. The load
of 20,000 Ib is at a 6-ft overhang. The height of the truss is 3 ft, all angles
being 90 and 45 deg. There are two counterweights of 15,000 1b each to
prevent the left wheel from lifting off its rail. All bars have the same cross
section. Calculate that cross section in square inches, if the stress is not to
exceed 10,000 1b/sq in. anywhere in the structure.
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ProBLEM 89.

90. A wall hoist truss has a horizontal bottom stringer of 12 units of
length, subdivided into four bars of 3 units each. The four vertical bars
have lengths 1, 2, 3, and 4 units, respectively, and all other dimensions follow.

a. The truss is loaded by only a vertical end load P (disregard the Q’s
shown). Find all the bar loads by the method of joints. Reason much and
caleulate little.
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b. The truss is loaded by the three @’s only, the end load being zero. Con-
struct the Maxwell-Cremona diagram.

¢. The truss is loaded with both P and @’s, where P = 3Q. In which bar
does the maximum force appear?
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91. A symmetrical railroad bridge, half of which is shown in the sketch,
consists of three trusses hinged together at A and A’, supported on piers at B,
B’ and on shore at C, C’. 1t is loaded by four equal loads P at the joints
shown, representing a single locomotive passing over the bridge. No other
loads apply to the left side of the structure, which is not shown in the sketch.
The seven sections of the big trusses are all alike; AB = 3I; BC = 4l, while
AA’ = 3l. The height of the small center truss is I, and the perpendicular
distance from the support B to bar 2 is 2I. Find the forces in bars 1 and 2.

Hint: A truss is a rigid structure. When several such “ trusses” are joined
together, they are first treated as rigid bodies, and the various forces between
them and the ground are determined. Then each truss is handled separately
by the usual methods.

ProsrEM 90.

ProBLEM 91,

92. A simple bridge truss is made up of bars with angles of 45 and 90 deg.
The height is k; the horizontal bars consequently are of length 24, and the
45-deg bars are of length & /2. The loading is a central vertical one of P.

a. By the method of sections find the forces in all the bars,
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b. Generalize the problem to a long truss containing N upper bars instead
of the four shown. Find the force in the nth upper bar from the left, the
nth lower bar from the left, the nth right-slanting diagonal bar, and the
nth left-slanting one. (Do it only for n < N/2.)

V174 2U [p
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ProBLENM 92.

.

93. A flexible cable is held by two forces P4 and Pp at equal height and 10 ff
apart horizontaliy. The eable is loaded with loads of 200, 100, 200, and 100 1b
as shown, and the horizontal tension is kept at 500 Ib by weights and pulleys.
Find the deflections of the cable at the four load points by accurate graphical
construction.

Hint: Determine the vertical reactions at the end pegs before choosing the
pole of the force diagram.

500

ProBLEM 93.

94. A suspension bridge of length 90 ft between towers is hanging in its
center span from eight cables 10 ft apart, each carrying 1 ,0001b. The center
portion of the main cable, between verticals 4 and 5, is horizontal and 6 ft

- —

PrOBLEM 94.
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above the bridge deck; the top of the tower is 36 ft above the bridge deck.
Calculate the total tension in the section of the main cable adjacent to the
tower. Also calculate the slope of that section.

95. A cable is stretched horizontally with a tensile force P over two pulleys.
Then two 60-deg forces, also equal to P, are applied at C and D, retaining their
60-deg. direction when the cable sags. At 4 and B sufficient vertical forces
are applied to keep A and B always on the original horizontal. We have
AC = CD = DB = /3. Find the sag and the tension of the center section.
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ProBLEM 95.

96. A string is attached to a wall at A. It carries three weights on definite
points on the string so that AC = CD = DE =]. (Note the difference
between this ease and that of Problem 93.) The string then passes through a
point B located at 3! horizontally to the right of A and [ vertically below it,
which is secured by an appropriate vertical force at B. The horizontal tension
in the string is 300 lb. Find the shape assumed by the string.
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ProBLEM 96.

Hint: This problem cannot be solved directly because the horizontal
locations of C, D, and E are not known at the start. Start by assuming a
vertical position of the pole in the force diagram and construct the shape
of the string beginning at A, which will then end up either above or below B.
Repeat the construction with an appropriately chosen second pole, and for the
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third trial interpolate (or if necessary, extrapolate) between the two first
trials.

97. A transmission line consists of copper wire (weighing 0.333 Ib/cu in.)
of 0.5 sq in. cross section. The span between towers is 400 ft. The line is
going uphill, and the top of one tower is 20 ft higher than the top of the next
one. The lowest point of the span is 20 ft below one tower top and 40 ft
below the other tower top. Calculate the horizontal tension of the line and
the location of the low point.

98. Calculate the sag in a transmission line with spans of 500 ft, tower tops
at equal heights, with a horizontal tension of 10,000 b, and a weight of 2 lb/ft.

99. A flexible cable weighing 1 1b/ft is stretched with a horizontal pull of
1,000 Ib between two points 100 ft apart and at equal height. In addition
to its own weight, the cable carries a central concentrated load of 50 lb.

a. Assuming “small”’ sags, describe in words the shape of the two halves
of the cable and write a formula for the slope or slopes at the center point,
expressing the vertical equilibrium of the concentrated load.

b. Calculate the sag in the center.

100. An inextensible cable of length 2L = 200 ft is suspended from two
points at equal height and distance 2! = 100 ft apart. How far will this cable
sag below the level of the supports?

Hint: This problem involves two properties of the catenary: its sag, for
which a formula is given in the text, and its length, for which the formula is
to be derived. 'The two equations thus obtained in térms of the two unknowns
y and H are “transcendental” and cannot be solved exactly; the numerical
solution is determined by consulting a table of hyperbolic functions, to be
found, for instance, in Marks’ “Handbook.”

101. A simply supported bridge girder of 40-ft span carries a locomotive
and tender with wheel loads of 1, 5, 5, 3, and 3 tons. Draw the shear-force
and bending-moment diagrams and specify the magnitude and location of the
maximum value of each of these quantities.
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ProBLEM 101,

102. A hoist consists of a 16-ft beam pivoted at one end and supported by
a 30-deg cable at the other end, as shown. The hoisting unit is a two-wheel
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truck, and carries a central load of 10 tons. Construct the shear-force and
bending-moment diagrams of the horizontal portion of the beam.
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ProrLEM 102.

103. A beam of length 3a, supported at one end and at a point 2a, is
loaded by a concentrated load P at mid-span and by a distributed load of
total magnitude P on the overhang. Draw the shear and bending-moment
diagrams true to scale and indicate the scale in the drawing. Specify the
location and magnitude of the maximum values of the shear force and bending
moment.
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ProaLEM 103.

104. An attic floor in a factory building of 40 ft span carries distributed
loads as indicated in the sketch. Draw the shear-force and bending-moment
diagrams.
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PROBLEM 104.
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106. A simply supported beam of span [ carries a distributed load that
varies linearly from a maximum value of w Ib/ft at the quarter-length point
to zero at the support. Derive formulas for the shear force and bending
moments as functions of the distance z along the beam and plot them in
diagrams.

PropraM 105.

106. Refer to Problem 92b, and sketch diagrams for the various forces
along the truss for N = 8 as an example. Note what happens to these dia-
grams when the number of trinngles N is increased, while the total length
of the truss remains the same. Note also that for large values of N and n
the compressive force nP in the upper girder becomes practically equal to the
tensile force in the bottom girder. Verify that for the limiting case N —» o,
the forces in the upper and lower girder form a bending moment

nPh = Prh = Pz/2,

as for a rigid beam, in the manner of Fig. 72 (page 69). Now deduce the
gimilar relationship between the diagonal bar force diagram of the truss of
Problem 92 and the shear-force diagram of a continuous beam. After this
explanation, the problem to be worked is as follows:

The truss is loaded with five equal loads Q.

a. Find all bar forces.

b. Generalize the problem for any value of N and n.

¢. Proceed to the limit N — e, and deduce from it the shear and bending-
moment diagrams for & uniformly loaded beam.

Q Q Q Q
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107. The plane structure shown consists of three bars and one cable, all
connections shown being frictionless hinges, and all angles being 45 or 90 deg.

ProsrLzm 108.
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The length BC = a; AB = 2a; the hinge A is located vertically above D, and
all other dimensions follow,

a. Calculate all hinge forces everywhere, and show in separate sketches
the forces on the cable and on the three bars individually.

b. State the value and the location of the maximum bending moment in
all three bars.
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ProsrLEM 107,

108. A pulley of diameter I/3 has to be mounted at the end of a horizontal
strut of length [; the strut has to be properly braced, and a weight W has to be
supported by a cable, of which the other end must be horizontal. Two
designers, one of them named Rube Goldberg, tackle the job and produce the
designs sketched. Calculate the bending moments in the three bars shown.

ProBrLEM 108.

109. A table top is supported by crossed legs which are hinged together
in the center. There is no friction on the ground or in any of the hinges. The
table is uniformly loaded with w lb/ft, and the dimensions I are expressed in
feet. Find the bending-moment diagrams of the top and of one of the legs.
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What and where is the maximum bending moment in the legs? What is the
distribution of compressive force in the legs?

ProBLEM 109. PropLEM 110,

110. A wedge is used to split a log. It is common experience that such a
wedge is self-locking, but it is conceivable that a well-greased, blunt wedge
might be squeezed out by the log. Find the relation between f and a for which
this will take place.

111. A nuteracker with arm lengths ! = 5 in. is used to crack a 1-in.-diam-
eter nut.

a. Find the relation between the friction coefficient and the angle & for
which the nut is on the point of slipping upwards.

b. For @ = 30° and P = 10 Ib, find the force exerted on the nut.

P P

Wrew
Pro®LEM 111, ProsLEMS 112 and 113,

112. A pulley carries weights W and W + w at the ends of a string slung
over it. Find the maximum value of w for which the pulley remains in equi-
librium. The pulley diameter is R, the axle diameter is r, the coefficient of
friction in the axle is f. Assume that the pulley load is transmitted to the
axle on a small area on the top of the axle and that the clearance is so large
that the pulley wheel does not touch the axle on the sides.

118, Assuming that the friction in the axle is small, calculate the ratio
between the friction coefficients at the pulley periphery (fyu.y) and at the axle
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(fazte) 80 that slipping will take place simultaneously at the axle and at the
periphery. By “small” is meant that an e function can be expanded into a
Taylor series and only the first significant term retained. The axle clearance
is the same as in the previous problem.

114. A 200-1b packing case, 2 ft high and 3 ft long, has its center of gravity
at mid-height but at one-third length horizontally. The friction on the
ground is 60 per cent.

a. If pulled to the right by a force P at the top of the case, will it tip or
slide, and at what value of P will this happen?

b. For what coefficient of friction on the ground will the case be on the
border line between sliding and tipping?

¢. Answer questions e and b when the case is pulled to the left instead of to
the right.
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ProBLEM 114, ProBLEM 115.

116. A uniform ladder of length ! rests at A on a 45-deg incline and at B
against a vertical wall. The ladder itself is also at 45 deg so that it is perpen-
dicular to the incline at A.

a. In the absence of friction, which way will the ladder start sliding at A4,
up or down?

b. Assuming no friction at B, what coefficient of friction at A is necessary
to prevent slipping?

116. A round vertical shaft of diameter 2r rests on a horizontal plane with
a total force W. When the shaft is turned, the friction at the bottom support
causes a resisting torque. Calculate this friction torque, assuming that the
force W is distributed uniformly over the area wr?, and calling the friction

coefficient f.
S o
|
|
7

ProBLEM 116, ProOBLEM 117,

117, A vertical shaft, sustaining a weight W, has a cone-shaped bottom
end and rests in a cone-shaped bearing. Assuming that the normal pressure
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is the same over the entire bearing surface, calculate the friction torque in
terms of W, R, f, and a.

118. A rope of length ! and weight W = w,l is to be dragged along a rough
floor with a coefficient of friction f. It can be lifted at the pulling end to a
height % above ground. In the calculation, the difference in length between
the curved portion of the rope and its horizontal projection is to be
neglected.

a. What horizontal pull H is required to just drag the rope, and what is the
distance z in this condition?

b. What is the vertical component of the pull at the pulling end in that
condition?

¢. Calculate the total pull (the resultant of the horizontal and vertical
components) for the case that I = 100 ft, w, = 21b/ft,f = 0.50, and & = O ft
and 3 ft.

™
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ProBLEM 118.
119. A bar of length R /2 rests in a rough semicircular trough of radius R.
Find the relation between the angle ¢ and the friction coefficient f for which

the bar is on the point of slipping down. Solve this problem by setting up the
equations of equilibrium.
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ProOBLEM 119. ProBLEM 120.

-

120. If in Problem 119 a semicircle ABC is described on the bar as diam-
eter, and if the weight force W intersects this semicircle in point D, prove that
AD and BD represent the contact forces between the bar and the cylinder.
From this property deduce the answer to Problem 119.



PROBLEMS 377

121. A uniform bar of length I rests with one end on a horizontal floor
and with another point on a half cylinder of radius r. The coeflicient of
friction on the ground and on the cylinder are both equal to the same value f.
Derive the relation between the angle « and the coefficient of friction for
impending slip.

ProBLEM 121, ProsLEM 122,

122. For the purpose of supporting a log to be sawed, a pair of sawhorses
is made up of two-by-fours A and B joined by a 1-in. broomstick C. Idealize
the problem by neglecting the thickness of the two-by-fours and assuming no
friction between the log and the sawhorses or in the broomstick hinge. The
only friction is between the legs and the horizontal ground.

a. Find the necessary friction coefficient on the ground to prevent slipping
under the weight of the log, expressed in terms of q, b, and c.

b. Calculate f numerically for the case that b = 24 and a = 45°, and
express your opinion on the technical competence of the designer of this device.

¢. How would you improve the sawhorse?

123. A rope carrying a weight of 300 Ib passes with ample clearance
through a piece of pipe bent into a quarter circle. The pull at the other end
of the rope is P, and the pipe is rigidly attached to a foundation. Assuming
25 per cent friction between the rope and the pipe, calculate the range of values
of the pull P for which the weight neither goes up nor down. Also calculate
the force (magnitude and direction) transmitted by the pipe to its foundation.
y

45°
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ProBLEM 123, ProBLEM 124,

124. A box, 3 ft high with two square sides 3 ft by 3 ft and a 45-deg face,
is supported on balls on the floor where it can roll freely in all directions. On
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each of the three upright faces there is a 1-ft-diameter pulley, solidly attached
to the face in its center, and two ropes are attached to each pulley. On
the front face the ropes are pulled with 100 b up and down; on the side
face, with 100 Ib fore and aft, as shown. The ropes on the back-side 45-deg
face are pulled horizontally. What forces must be in them to keep the box in
equilibrium?

126. A long flexible steel wire is solidly attached to 1-ft circular disks at the
ends, each carrying two handles, a black one and a white one, All of this has
negligible weight. A man has one disk in his hands, and he pushes down on
the black handle and up on the white one, with equal forces F. Another
man holds the other disk in his two hands. What forces must he exert for
equilibrium? Answer this for cases a, b, and ¢.
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ProsLEM 125.

126. The figure shows a cube of side a. Three forces F are acting on it as
shown.

a. By shifting the point of applieation of all three forces to O, find the
resulting “screw” in direction and magnitude.

b. Verify this result by shifting the A and B force to point C, finding the
resulting force and couple and from it again the “screw.”

C
oF
o
A @
B F,
ProBLEM 126. ProsLEM 127.

127. Two forces F and 2F are at right angles and at distance a apart.
Find the resulting *screw,”
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128. Two forces F, and F; = F /\/§ are distance a apart and at 45 deg

with respect to one another. Find the resulting screw.
Hint: Is there a way of using the known solution of Problem 127 for this

case?
z

ProBLEM 128,

129. A bar of length @ /2 is pivoted by a frictionless ball jointat A. The
upper end of the bar rests against a rough, vertical wall at distance a from the
Find the relation between the coefficient of friction, f, on the vertical

joint.
wall and the angle a of the vertical projection of the bar.
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ProsLEM 129.

| 130. The sketch shows a perspective and two projections of a space struc-
! ture consisting of three bars, OC, AC, and BC, hix“,lged to the ground at their

Cq
ELEVATION
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PLAN y 4

ProBLEM 130,
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bottoms and hinged together at the top. At point C a force P is acting as
shown, parallel to the zy plane and at 45 deg with respect to both the z and
y axes. All angles between the bars and the ground are 45 and 90 deg. Find
the three bar forces.

181. A turbine rotor weighing 15,000 Ib is supported on two bearings
15 ft apart. In the planes I and II there are forces acting as shown, both
projections as seen from A to the right. Find the bearing reactions.

T | 15000
| — | 5000

ProsreM 131.

1382. A pole AD is attached to a vertical wall by a ball joint at D and two
horizontal guys at A and C. It carries a vertical load of 1,000 1b at B. Find
the forces in the guy wires, the three components of the supporting forces at
D, and the maximum bending moment in the bar.

ProeLEM 132,

188. A camshaft consists of three circular but eccentric cams, offset from
each other by angles of 90 deg and 45 deg. The cam disks each weigh 2 Ib; the
sections of shaft between the disks and outside of them each weigh 1 1b, so
that the total weight of the assembly is 101b. The eccentricity of the points
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C is 1 in.; the diameter of the dises is 4 in. Determine the location of the
center of gravity.

ProeLEMS 133 and 139.

134. A bar of length 2r and of weight W, with its center of gravity in the
center, is suspended from two vertical strings of length I. Two horizontal
forces P at distance r/2 apart are made to act on the bar, and these forces
remain perpendicular to the bar after the bar has turned.

a. Show by simple reasoning that the bar will rotate in its plane about its
center.

b. Calculate the angle of rotation « as a function of P, W, r, and 1.

¢. What forces P are required to rotate the bar 90 deg and 180 deg?

d. The case when the center of gravity of the bar is no longer in the center,
but a distance a from it, is more complicated. Assuming small forces P, find
the point of the bar about which it rotates through a small angle, and derive
this angle as a function of P, W, r, I, and a.
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ProsLEM 134,

1386. A solid circular disk of radius » and weight W with its center of
gravity in the center O is suspended from three vertical strings of length I
attached to points 4, B, and C of the periphery, 120 deg apart. Calculate the
displacement of the disk in each of the four following cases:
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. As a result of a force P in the plane of the disk in the direction AO.

. By a force P in the plane of the disk in the direction perpendicular to A0.
. By a moment M in the disk.

. By a force P in the plane of the disk directed tangentially at point A.

o ove

p

A ()
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ProBLEM 135.

136. A stiff flat rectangular plate is placed on an elastic foundation giving
a vertical reaction force of k8 dA Ib on an element of area dA pushed into the
ground through a distance 8. A load P is placed on it off center at location
¢,d.

a. Find the deflection of the plate § = f(z,y).

b. Find the condition for ¢ and d so that one corner of the plate just has
zero deflection, the entire plate being pushed down into the ground.

Hints: a. Read Sec. 11, and note particularly Figs. 46 and 47 (page 44).
Resolve the load into a central load and into two couples, tending to turn
the plate about the z and y axes, and solve for these three cases separately.
The total deflection is the sum of those three partial deflections.

b. If the load is sufficiently close to the center, the entire plate will go
down; otherwise, one corner will go up. Find in one quadrant the line or
curve that separates the locations of the load P in which the opposite corner
goes up from those in which the corner goes down. By symmetry the other
three quadrants are treated.

T l
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ProBLEM 136,

137. In a machine there was a square plate, which was loaded at its four
corners, two pushing down and two pushing up. As a result the plate warped
as indicated in the sketch, and the warping was considered greater than
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permissible, so that it became necessary to stiffen the plate. This could be
done with a minimum of extra weight by erecting on it a space structure of
four thin bars meeting at a point above the center of the plate. The situation
is idealized in the nine-bar five-joint space frame shown, in which AB = CD.
Point E is above the center of the square, and angle AEC of the vertical
diagonal plane is 90 deg.

a. Indicate how this space frame can be constructed by the repeated
tetrahedron method of page 121.

b. Calculate the forces in all the bars.

Ay L
3

ProBLEM 137,

138. A tetrahedron is a six-bar four-

joint space frame, the simplest possible one,

In problem 137 we have three more bars

and one more joint. In this problem wego
one step further by adding again three bars

and a joint. The space frame of this prob-

lem can be derived from the previous one D
by distorting it, i.e., pulling point E side- i

wise to bring it above point B, and inci- P

dentally making BE = AB = AD. Then B C
we add point F, tying it to E, D, and A y Tp
The loading we keep as before. Find the PropLem 138.

forces in all bars.

139. Referring to Problem 133, let the cams each carry a load, applying
on their peripheries at the point where they intersect the vertical plane 0C,.
These three forces all have the same vertical component P = 40 lb, and
enough horizontal component to make the resultant pressure perpendicular
to the cam.

Moreover, let each cam carry a “centrifugal force” of 20 Ib, directed
radially out from O through C. Let the cam be supported on bearings A and
B, 8 in. apart.

Determine the bending-moment diagram in the horizontal plane OC, only.

140. A two-throw crank with the cranks 90 deg offset consists of nine
pieces of straight shafting, all of length a. It is held at A by a ball joint
(worth three supports), at B by a bearing (worth two supports), and at C by
a double-hinged strut (worth one support). It is loaded by a single force P.

F
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a. Draw the bending-moment diagrams for the horizontal and vertical
planes, and the twisting-moment diagram, for the center piece of main shafting
only.

b. Determine the magnitude and location of the maximum bending
moment, both in the horizontal and in the vertical planes, and of the maximum
twisting moment.
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ProBLEM 140, ProBLEM 141,

141. A steam pipe line contains a temperature-expansion bend. The
center line of the pipe is shown in the sketch; it has vertical stretches of
length &, followed by horizontal stretches of length @, joined together by a
horizontal semicircle of diameter a. When heated, the pipe tends to expand,
but this expansion is impeded by the structure of which the pipe forms a part.
As a result, forces P appear as shown.

Draw the bending-moment diagrams in the vertical and horizontal planes
and the twisting-moment diagram. State where and how large are the
maximum total bending moment and the maximum twisting moment.

142. A wheel of 4-ft diameter rolls without slipping over a horizontal floor
through a distance of 1 ft to the right. On it are acting a force F = 100 Ib
to the right and a counterclockwise moment of 200 ft-lb.

a. What is the work done by the force F?

b. What is the work done by the moment M?

¢. What is the work done by the force and moment combined?

11
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PROBLEM 142, ProBLEM 143,

143. A solid wheel of weight W = 100 Ib has two pulley grooves cut into
itatradiir; = 8in.andr, = 4in. The ropes shown pull with forces P, = 100
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Ib, P, = 150 Ib. The wheel is allowed to rotate through a full revolution in
a clockwise direction. What is the work done by all three forces combined?

144. The cart of a roller coaster in an amusement park weighs 300 lb.
The part of the track we are considering has the shape of a quarter sine wave
of height & = 30 ft and I = 100 ft. While the cart is going down, two forces
are acting on it: the weight W and the normal force N.

a. What is the work done by the weight force on the cart when it goes
down from the top to the bottom?

b. What is the work done by the normal force N?

¢. What is the work done by all the forces (W and N) acting on the cart?

N
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ProBLEM 144.

145. A platform scale is supported at A and B by means of a system of
levers, which are all pivoted at their ends without friction. The dimensions
are given by a, b, ¢, and d, while the distance e is variable. The adjustment
weight w is placed at an appropriate location e so as to counterbalance the
load W to be weighed.

a. Find a relation between the dimensions g, b, ¢, and d that must be satis-
fied if the reading e is to be independent of the location of W on the platform.

b. With the above relation satisfied, what is e?

P

ProBLEM 145. PRroBLEM 146.

146. A trough, hinged at the bottom, carries a cylinder of radius r and
weight W. What forces P are necessary to keep the system in equilibrium
in the absence of friction?
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147. The figure shows a system like that of Fig. 131 (page 148), except
that here the angles are 30 deg. Determine the forces X in terms of P by
the method of work.

Determine the reactions between the bars at their hinge points 1, 2, 3, ete.
(by the method of equilibrium of successive bodies).

Y/
|4
Pl P2 B
ProBrLEM 147. PrOBLEM 148.

148. Six bars of equal lengths and equal weights are hinged together at
their ends so as to form a hexagon. One of the bars is screwed to a ceiling,
and the hexagon hangs down in a vertical plane. A weightless string AB con-
nects the center points of the upper and lower bars. If I, is the length of one
bar, I, the length of the string, and W; the weight of one bar, find the tensile
force in the string.

Hint: Cut the string, call its force X, and use the method of work. Also
solve by equilibrium of the individual bars; what happens to this solution
for the extreme cases I, = 0 and [, = 24?7

149, In the differential drive in the rear of a car, A is the drive shaft from
the engine, B and C are the wheel shafts. A carries at its end a pinion with
na teeth on it, meshing with a gear D with np teeth. This gear is an integral
part of a frame, shown in thin lines in the sketch, which can rotate on bearings
around the shafts B and C, and it carries a number of pins E (usually four),
on which planet gears can freely turn. These planet gears mesh with the
gears mounted on the ends of the B and C shafts. These two shafts carry
protuberances at the center of the figure, which force the shafts to be in line
with each other, but which oppose no restriction to relative rotation between
them. Not shown on the drawing is a housing surrounding everything, with
bearings around 4, B, and C, through which the three shafts protrude. This
housing is filled with grease and furnishes a point of attachment to the car
body (through the springs).



PROBLEMS 387

A torque of moment M is applied to the non-rotating drive shaft, while
B, C, and the outside housing are held by appropriate forces and moments to
keep the entire system at rest. Find the moments on the shafts B and C

and the moment on the housing.
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ProBLEM 149,

160. A vélotazi, or French wartime equivalent of the Oriental rickshaw,
is a bicycle used for hauling behind it a light carriage with one or more passen-
gers. Calculate the ratio between the load Q@ and the pedal push P necessary
for starting, in terms of the following quantities:

a = moment arm of pedal

r, = radius of the large or pedal sprocket

r, = radius of the small or rear-wheel sprocket

R = radius of the rear wheel
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ProBLEM 150,

161. A grab bucket for hoisting coal hangs from a crane at point A.
The crane can lift and lower point A, but for the problem consider 4 fixed in
space. Then by pulling up on the “closing rope” at P, the buckets can be
closed. At C there is & drum with a portion of large diameter over which
the closing rope is wrapped several times, and a portion of smaller diameter
over which a chain is wrapped several times, with the other end attached at
A. If the rope P is pulled, the drum rotates, and the chain is wound up the
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small diameter part of it, thus bringing C closer to A. One bucket then moves
a8 a two-bar link mechanism with the bars AB and BC, where A is fixed and
C moves along a vertical line.

a. Set up an equation expressing the pull P in terms of the bucket weights,
the drum weight, the drum diameters, and a ratio ¢/5, where you define e and §
appropriately.

b. Substitute the following values:

AB = 48in, BC =36in., BG = 18in.
ZCBG = 90°, £ZDCB = 45°
Large-drum diameter = 18 in.
Small-drum diameter = 414 in.

Weight of bars AB is negligible
Weight of each bucket = 100 1b
Weight of the drum = 50 Ib

¢. What is P numerically for the position when BC is horizontal?
d. For what angles of BC with the horizontal will the force P be zero?

4.P

P A AP

ProBLEM 151.

1562. A Riehle materials-testing machine consists of & main frame 4 sup-
ported on an elaborate lever system. The test piece 7' is mounted between
the top of the frame and a test table B, which, in turn, is pulled down by four
large screws C. The screws are turned in the bottom pit by a gear-and-pinion
drive and are held by thrust bearings to the ground in the pit. In this man-
ner, a very large downpull can be exerted on B, sufficient to break the test
piece T. The rest of the equipment serves only to measure the force in the
test piece. The right-hand end of the frame A is supported by the lever E,
and the left-hand end by the lever D, which is only partly drawn, but which
extends all the way to F, where it attaches to the lever E in a pivot joint.
This is done by giving E a V shape, with the point at F, the two arms at the
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table A. The lever D passes between the two arms of the V to F. The force
in the test piece is measured by adjusting the position of the moving weight
H until the end of the lever at G plays between the two stops. The counter-
weight J is so dimensioned that when H is set at zero, the arm G is floating
when the test-piece pull is zero, 1.c., the weight of the frame A plus the weight
of the levers and the weight J together balance the arm G and the weight H
at zero.
a. What relation between @, b, ¢, and & must exist in order that the frame

force A be equally distributed among the two levers D and E?

b. Find the relation between the test-piece pull 7T, the weight H, and the
various dimensions shown.

¢. In which of the levers and at which location does the maximum bending
moment occur?

ProBLEM 152.

163. The speed-reduction gear between an airplane engine and the propeller
usually is of the planetary type. The engine is directly coupled to a central
gear A, which meshes with a number of planet gears B. The planet gears
mesh with an internal gear C, which does not rotate, but which is rigidly
mounted to the engine frame and hence to the airplane. The planet-gear
shafts fit in bearings in a spider D, which has a central bearing fitting around
the shaft of the center gear and engine A. It is to this spider that the airplane
propeller is attached. Thus the engine shaft A is free to rotate inside the
spider bearing D.

The sketch shows the case of five planet gears, all of the same diameter as
the central gear A.

a. If a torque moment M is applied to the engine shaft, what torque must
act on the propeller D and on the engine frame C for equilibrium?
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b. Answer the same question for the more general case that the diameters of
A and B are not the same but are d, and ds.

PropLEM 153.

164. A solid block of dimensions &, I, and weight W rests on a rough
eylinder of radius r, on which it can roll without slipping. For what relation
between the quantities [, &, r, and W ig the equilibrium stable?

h/2
A/2
[
% ; %
T 777 ’
ProBLEM 154, ProOBLEM 155.

165. The assembly consisting of the horizontal bar, knife-edge, and two
vertical crossbars (but without the weights) weighs 10 1b, and its center of
gravity G is 3 in. above the knife-edge. The two weights shown are 3 Ib each
and can be screwed up and down, always moving together, so that they are
at the same distance from the main horizontal bar. Describe accurately the
positions of the weights for which the equilibrium is stable. (In the good old
days the stores used to sell small Chinese wood carvings utilizing this principle.)
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166. A uniformly solid half cylinder of radius 7, rests, with the curved side
down, on top of a fixed half cylinder of radius 7. The surfaces are sufficiently
rough to prevent slipping. Under what circumstances is the equilibrium
stable?

ProsLEMS 156 and 157,

157. a. The same as Problem 156 when the half cylinders are replaced by
uniformly solid half spheres.

b. Which answer applies when one of the objects is a half sphere and the
other one is a half cylinder?

158. In Problem 93 the deflections of a flexible cable were calculated under
the influence of four loads that could move along vertical lines only. It is
possible to calculate the position of the center of gravity of the siz weights
involved.

a. Using the theorem of work, make a statement in one sentence about a
property of that center of gravity, and in that sentence consider the two cases
of an extensible and an inextensible cable.

b. Calculate numerically the position of the center of gravity for the three
following cases: (1) The cable is in the position of equilibrium of Problem 93.
(2) The point A is 1 ft higher than before, and consequently point B is in a
different position, but all other points are in the same position as before.
(3) Point A is 1 ft lower.

500

PropLEM 158,

169. Four rectangular plates are hinged together along their sides so as to
form a square or diamond-shaped paralielepiped. A spring of stiffness &
connects two opposing hinges such that in the square shape shown, the spring
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tension force is P. This force is held in equilibrium by two externally applied
forces P along the other diagonal. Find under what circumstances this
equilibrium is stable or unstable.

P
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ProBLEM 159. ProBLEM 160.

160. Return to Problem 42, where both wheels rest against the wall.
Consider the possibility of the plate and rope leaving the plane perpendicular
to the wall and rotating about the vertical line connecting the two wheels until
the plate may go so far as to lie flat against the wall. Assume that the wheels
do not slip sidewise. For what relations between the dimensions is the equili-
brium in the mid-position stable, unstable, or indifferent?

161. A rotating crank carries at its end a block that can slide in a guide.
The guide is attached -to a piston and piston rod and is itself constrained to
move in a direction perpendicular to its own center line AA. The apparatus
is known as a “Scotch crank.”

a. Calling the crank radius r, the constant angular speed of the crank w,
and the angle of the crank with respect to the vertical @ = wf, find the accelera-
tion of the piston.

b. Reduce the answer to numbers for r = 12 in., the crank rotating at
200 rpm, and w = 45 deg.
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ProBLEM 161.
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162. In Leonardo da Vinei’s experiment (page 159), we suppose that the
vertical boards are 8 ft long. The leaking faucet is at such height, and
the rate of dropping is so regulated, that when a drop is just coming out of the
faucet, the next or second drop is just at the top of the boards, and the sixth
drop is at the bottom of the boards, while drops 8, 4, and 5 are between the
boards. Calculate the number of drops leaving the faucet per second, and
sketch the distance between drops.

163. A local train has a normal speed of 60 mph between stations. When
putting on brakes, it can decelerate at a rate of 2 mph/sec, and when starting
from a station it can accelerate at a rate of 1 mph/sec.

a. Calculate the time lost in making a stop of 1 minute at a station.

b. Sketch curves for velocity versus time and displacement versus time for
the entire period.

164. In Problem 163, calculate the minimum distance between two stations
for which the train just can reach its 60 mph speed before putting on the
brakes again.

166. The motion of a piston of a steam engine is described by the equation

z = afcos wt + 3{¢(cos 2wt — 1)]

Find the expressions for the velocity and acceleration and calculate the value
of the maximum velocity occurring during this motion.

166. A point moves along a straight line with a constant third derivative
‘% = 10 in./sec?. It starts off at time ¢ = 0 with an initial acceleration
#o = 10 in./sec? and an initial velocity o = 5 in./sec. How far does the
point travel

a. During the first second?

b. During the first 5 seconds?

167. A wheel has an initial speed of 500 rpm and is being slowed down at
a rate of 2 rpm/sec. How many revolutions does the wheel make before it
comes to a stop?

168. A rocket is shot vertically straight up, and, once in flight, is subjected

to a downward acceleration ¢ = 32.2 ft/sec?

a. Calculate the initial velocity required to shoot a rocket to a height of
100 miles.

b. Calculate the time elapsed between the moment of launching and the
moment of return to earth of this rocket.

169. A wheel with a peripheral radius of 1 ft carries a string
wrapped around it. A weight on the string goes down with a ’@r
velocity of 5 ft/sec and an acceleration of 4 g = 16.1 ft/sec?.
Calculate

a. The magnitude and the direction of the acceleration of a
point on the periphery of the wheel.

b. The same for a point midway between the center and

the periphery of the wheel. .

ProBLEM 169.
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170. A mass at the end of a 3-ft string is swung around a steady point in a
vertical plane. The mass can pass through the overhead position A in the
manner described only when the centripetal acceleration exceeds g. Calculate
the velocity v required to insure a centripetal acceleration 1.20g.

S - —

PROBLEM 170. PropLEM 171,

171. A point moves with a constant velocity of 1 ft/sec along a parabola,
defined by the apex in the origin O and the point A withz = 1ftandy = 1ft.
Calculate the acceleration of the point when it passes through the apex O.

172. The sketch shows a ““crown wheel,” an ancient piece of mechanism that
has acquired new interest during the last 15 years as an element in the large
computing machines that are called ““mechanical brains” by the newspapers.
With a crown wheel it is possible to integrate a function mechanically.

a. Prove that if the crown wheel is rotated at constant angular speed w,,
and if the rider wheel is moved along its own axis according to a given relation
r = f(t), and if the rider wheel does not slip, then the angle through which the
rider rotates is proportional to the integral (f(f) dt. What is the proportion-
ality constant?

b. Through how many revolutions does the rider wheel rotate in 5 sec if
ro = 1 in., w, is found from 8 rps, and r increases from 2 to 4 in. during 5 sec
with a constant velocity #?
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ProBLEM 172.
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178. Another piece of mechanism that has been applied to calculating
machines is the differential gear, familiar from the rear end of automobiles
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(Problem 149). It is used as a device for adding and subtracting continuous
functions.

Prove that if axis C is forcibly rotated so that its angle ¢c = fe(f) is a
given function of time, and if axis B is rotated as ¢ = f5(t), then the third or
central axis rotates as

¢4 = constant [fa(f) + fe(8)]

Determine the proportionality constant from the dimensions of the device.
174. A third device that has been employed in computers is *Peaucellier’s

inversor,” consisting of six rigid bars, two of length L, four of length I, linked
together as shown. The point P is guided to move along a straight line
through O, and the point @ necessarily moves along the same line OPQ. The
apparatus is called an “inversor,” because with OP = rp and 0Q = rq, the
relation rprq = L2 — 12 exists for all positions of the points P and @, so that
rp and rq are inverses of each other.

a. Prove the property rprq = L? — I2

b. From it find the ratio of the velocities of points P and @, and in par-
ticular, find the velocity of Q if . = 8 in., { = 4in,,OP = 5 in,, and vp = 4
in./sec.
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ProBLEM 174. PropLEM 175,

176. A point moves at constant velocity v, along aispiral curve, which is
described in the simplest manner in semipolar coordinates, r, ¢, 2, as follows:

r=r
-
z=g2¢

in which ry, the radius, and %, the pitch, are constants. Calculate the compo-
nents of acceleration in the three component directions, and find the resultant
veceleration,
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176. A point moves in a plane along an Archimedean spiral at constant
angular speed wo, described by

r = 7o + vol, @ = wol

a. Calculate the total velocity at time ¢, its r and ¢ components, and its
z and y components.

b. Calculate the z and ¥ components of acceleration at time ¢, and the total
acceleration at time .

¢. Substitute numbers for point A, where ¢ = 135° the angular speed is
1 rps, ro = 10 in., and v = 1 in./sec.

A,
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ProBLEM 176. ProsLEM 177,

177. The Gnome-Rhone aircraft engine, widely used during the First
World War, had a stationary, non-rotating crank OA = a, while the seven
cylinders, equiangularly spaced, rotated at constant speed. The propeller
was attached to the rotating cylinders, either directly or through a gear reduc-
tion. The sketch shows one of the seven cylinders. The cylinders and the
radius OP rotate at uniform speed wo; the piston P can slide in the cylinder, and
the connecting rod AP of length ! consequently rotates at non-uniform speed.

a. Calculate first the angular speed w, and then the angular acceleration
& of the connecting rod AP,

b. Substitute numbers: @ = 4 in., I = 8 in. OP rotates at 2,000 rpm.
Plot » and & versus the angle ¢ = wet for a full revolution.

178. The two extremities of a rod of length I are made to slide along two
perpendicular lines, the bottom block A with a constant horizontal velocity vo.

a. Determine the path described by the mid-point B.

b. Find the velocity of mid-point B, and also the velocity of the upper
block C, as functions of the time ¢. The bar is in the vertical position along
the y axis at time ¢ = 0.

¢. Find the acceleration of points C and B,
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d. Substitute the numbers [ = 2 ft, v, = 1 ft/sec, and plot the various
velocities and accelerations versus time for 2 sec, indicating the vertical scales
in proper units.

Y

ProBLEM 178,

179. The main drive rod of a locomotive connects the block sliding in the
guide to the crankpin of the front driving wheel. Let the center line of the
guide be tangent to the circle constituting the path of the crankpin with respect
to the wheel center. The system thus is a crank mechanism differing from
Fig. 148 of the text only in that the piston-rod center line is tangent to the
crank circle instead of passing through its center. Let the locomotive move
forward at constant speed V, let the wheel radius be R, the crank radius r, and
the connecting-rod length 1.

a. Derive an expression for the displacement of the slide with respect to the
wheel center and also with respect to the rail.

b. Find from it expressions for the velocity and acceleration of the slide.

¢. Substitute the numbers V = 60 mph, R = 234 ft, r = 114 ft, and
1 = 6 f§, and calculate the maximum acceleration of the guide.

ProBrLEM 179,

180. A crank OB = r is rotating at a constant angular velocity ¢. It
drives a rod, which passes through a rocking slide, pivoted at a fixed point A
located at a distance OA = 2r. Let the angle of the rod BAC bey. Derive
a formula for the ratio of the angular speeds /¢ in terms of the angle ¢ only
(the angle ¥ must not appear in the answer). Check this formula for the four
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points where the result can be seen almost immediately, namely, for ¢ = 0

and 180° and the two locations where y = 0.

ProsLEM 180.

181. A mechanism known as a “Geneva motion” consists of two flat disks
of equal diameter, set parallel to each other, face to face, a short distanceapart.

ProeLEM 181. The Geneva mechanism,

One of the disks O, (the driving one)
carries a pin P, perpendicularly attached
to itself and at distance r from its center.
The other disk has four slots as shown.
The distance between the two disk centers
0; and 0, is r /2, which means that their
45-deg radii are perpendicular to each
other, as shown in the sketch. The driv-
ing disk O, rotates at constant speed w,
and once per revolution the pin engages a
slot and turns the other disk O, through 90
deg. During the next 270 deg of motion
of the driving disk, the driven one stands
still.

a. Let £0:,0,P = ¢ and £0,0:.P =¢.
Find a simple relation between ¢ and ¢,
not necessarily explicit in ¥, and plot ¢
versus y.

b. Differentiate and find a relation
for y/¢ as a function of ¢ and . Calcu-
late this numerically and ploty/¢ versus ¢.

ProsreM 181. The Maltese-cross
mechanism.
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¢. Notice that with the dimensions shown, the driven angular speed ¢ is
zero when the pin leaves the wheel 0,. Derive an expression, relating the
wheel-center distance d = 0,0; to the pin radius 7 = 0,P and to the number n
of equidistant slots, that will ensure this desirable characteristic of the Geneva
mechanism for a number of slots, n, different from four.

A construction of this mechanism where the two disks are in the same plane
requires cutting away some parts of the driven disk. It is then called a
“ Maltese-cross mechanism.”

182, A rod is pivoted at its end 0. A block A can slide freely along the
rod, and the block A is attached to another block B by a frictionless hinge pin.
The block B can slide freely along a slide of which the center line has a perpen-
dicular distance a to the center O. The bar is made to rock between two
extreme 45-deg positions P and @ in a harmonic manner (see page 159),
expressed by

sin wit

s

Q=

a. Calculate the velocity of the block B.

b. What is the numerical value of that velocity for ¢ = 30 deg, a = 101in.,
and w = 6r radians/sec (which means 3 full back-and-forth oscillations per
second) ?

|

-

PrOBLEM 182.

188. It is said that a parachutist lands on the ground with a speed equal to
the speed he would have had if he had jumped from & height of 16 feet.
Express that velocity in miles per hour.

184. In Galileo’s problem (Fig. 154, page 180), the locus was found of the
points reached by a particle in equal times starting from rest for various
inclinations of a smooth plane.

Now find the locus of the points where particles starting from rest at various
inclinations of a smooth plane reach equal velocities.

186. A particle slides down a 20-deg, rough inclined plane with a coefficient
of friction of 10 per cent. Stacting from rest, what is the speed reached after
3 ft of travel along the plane? What time has elapsed?
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186. A block weighing 5 b is pulled up along a 30-deg incline with a parallel
rope having a tension of 5 Ib. The coefficient of friction is 10 per cent. The
block starts from rest and the string pulls during 2 see, when it is suddenly
slacked off.

a. How long does it take the block to slide down to the starting point at the
bottom again?

b. How long does the incline have to be?

187. A four-engine airplane flies horizontally at uniform speed with a
“drag” or air-resistance force equal to 5 per cent of its weight, which force
is balanced by the four propeller pulls. One engine goes out, and the pilot
leaves the adjustments on the remaining three engines unchanged, and also
keeps the ship at the same speed as before by permitting it to glide down.
How much altitude does the airplane lose per mile?

188. A particle is thrown up a smooth inclined plane with an initial velocity
vo. It will go up a certain distance and then reverse.

a. Find expressions for the time elapsed and for the velocity at a point on
the way down midway between the starting and the topmost positions.

b. Give numbers for the case that @ = 30° and vy = 20 ft/sec.

189. A 5-1b weight hangs from a spring of such stiffness that the spring
stretches § = 14 in. under the weight.

a. Calculate the stiffness of the spring.

b. Calculate the natural frequency of up and down vibrations,

¢. Write a formula for the frequency in terms of § alone, in which neither
the mass m nor the spring constant k& appears.
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ProsLEM 189. ProsLEM 190,

190. A sliding garage door of the dimensions shown is pushed by a force P
at the bottom edge. Assume no friction anywhere, and assume that the door
acts as a particle of weight W, located at height ks, as shown. For what value
of P does one of the wheels lift off, and which wheel is it?

191. An object of 1-cu-ft volume and of 65.0-ib weight is released from rest
in salt water of 64.0 Ib/cu ft. It sinks down so slowly that the water-resist-
ance force is negligible at the beginning of the motion. How long does it take
to sink down 10 ft?
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192. An object sinks down in water, and is subjected not only to the gravity
force, but also to a water-resistance force that is proportional to the velocity:
F = ci. In the beginning of its fall it will accelerate, but after some time it
will acquire a terminal velocity that is constant.

a. In what units is the constant ¢ expressed?

b. Find that terminal velocity in terms of whatever variables are necessary.

¢. Set up the equation of motion and integrate it once to obtain an expres-
sion for the velocity z.

d. If the specific weight of the sinking body is 1.05 and the terminal velocity
is 10 ft/sec, calculate the time necessary to reach a speed of 8 ft/sec, starting
from rest.

193. Calculate the length of a simple pendulum with a frequency of 50
cycles/minute, 1.e., making 50 swings to the right and 50 swings to the left
each minute.

194. A simple pendulum with a 1-lb bob
and of 2-ft length is released from rest from a
30-deg position. When it reaches the vertical
it strikes a peg 1 ft under the point of suspen-
gion. It swings up to an extreme position 2.
Calculate the time elapsed between 1 and 2.
Calculate the tension in the string at position
2.

ProBrLEM 194,

195. A cone with an apex angle of 2a = 60° rotates at uniform speed about
its vertical axis. On it lies a 1-1b particlehanging from astring. The particle
rotates with the cone.

a. Derive formulae for the tension in the string and for the pressure on the
cone,

b. Plot these numerically against the rpm, indicating proper scales on your
graph.

ProBLEM 195,
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196. In a semispherical bowl of radius r there is a particle of mass m. In
the absence of friction it makes no difference whether the bowl rotates or not;
the condition is determined by the rotation w of the particle. Find the rela-
tion between the angle @ and w. For » = 6 in., what is the required rpm
for o0 = 45°?
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ProsBLEM 196. PropLEM 197.

197. A portion of the smooth track of a roller coaster is made up of 60-deg
arcs of a circle, of radius r = 30 ft, lying in a vertical plane as shown. A par-
ticle moves along this track having a velocity o at the top, limited by the fact
that on reaching the point A the pressure on the track is just zero. Determine
the velocities and the pressures at the top and bottom points of the track.

198. A smooth track consists of a 45-deg incline tangent to a 225-deg
arc of circle, as shown. A particle is launched with zero starting speed from
point 4 at equal height with the top of the circle. At a point B, the particle
will leave the track. Calculate the angle a where this takes place.

>

199. A gun has a muzzle velocity of 2,500 ft/sec. Calculate the angle of
elevation required to hit a target located at 20 miles from the gun at the same
level as the gun.

200. A track for automobile races of oval shape consists of two straight
pieces and of two arcs that are not semicircles but curves of which the curva-
ture increases gradually from zero at the straight portion towards a maximum
at the center of the arc. Such a track must be inclined towards the inside,
or must have an angle of bank in order to ensure that the racing vehicles have
reactions perpendicular to the track, and do not slip sidewise (outward at too
high speeds, inward at insufficient speeds).

ProBLEM 198. ProBLEM 200.
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a. Derive a formula relating the angle of bank to the radius of curvature R
of the track and the speed of the vehicle ».

b. What is the maximum radius of curvature required at 120-mph speed,
if the angle of bank is limited to 45 deg?

201. A flat circular table with upraised edge rotates at uniform speed w
about its axis. On the table lies & particle without friction, which can move
along a radius only and is tied to the center l.”-r:- --.'j
by a spring of stiffness k. When the -1
spring is unstretched (at no rotation of
the table), the center of the particle is at ‘---l; -—ﬂ-l |
radius r;. When the particle reaches the

4 A 7
. o . ’ PVVWAWAA
edge, its center radius 872 . /'IIIIIIIIIIIII/ /I//Illlllglll/f
a. Set up an equation for the relation 7

between r and w for speeds w in the
region ry <71 < 7o

b. Set up the relation between the
speed w and the pressure against the edge w
of the table for higher speeds w. ProBLEM 201.

¢. Letr, = 5in,,r; = 8in,,w = 11b,k = 50Ib/in. At what rpm will the
particle reach the edge?

202. If in the Scotch crank mechanism of Problem 161, the piston, its rod,
and the slotted guide have a total weight w, write

a. An expression for the torque that has to be exerted on the crank torotate
it at a uniform velocity w.

b. For w = 20 Ib, r = 5 in., and 500 rpm, what is the maximum value of
the torque and at what angles a does it occur?

203. A bucket filled with water is swung at the end of a rope of length I,
in a circular path in a vertical plane. If m, is the mass of the water, con-
sidered to be a particle, and m. is the mass of the bucket, find the minimum
speed in the top of the path for which the water still stays in the bucket.

What is the tension in the string and what is the pressure of the water on
the bottom of the bucket as a function of velocity in that top position?
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ProBLEM 203. PROBLEM 204,

204. Two particles of different weight and different surface roughness slide
down an inclined plane,
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a. Set up a formula for the downward acceleration and for the tension in
the connecting string. What must be true about the two friction coeffcients
/1 and £ if the string is to have tension?

b. What is the string tension if wy = 2 lb, w. = 1 lb, fi = 10 per cent,
f: = 30 per cent, and o = 30°?

205. The system of Problem 204 is being pulled up the plane by a string
attached to the top mass and inclined at angle 8 with respect to the plane (and
hence at angle @ 4+ 8 with respect to the horizontal). Write the relation
between the tension in the pulling string and the upward acceleration of the
system.

206. The wedge a of mass m, lies on a horizontal plane. On it rests
another mass m;. When m, slidesdown,
the mass m, goes to the right. Find
formulae for the accelerations of m; and
ms in the absence of friction.

Hint: First write a geometric relation
between the displacements z;, 1, and z;;
then Newton’s equations for both bodies. Proprrx 206.

207. The wedge of the previous problem is pulled horizontally to the left
by a string. If the string is pulled sufficiently hard, the mass m, will slide up
the plane. Derive formulae for the accelerations of m, and m, as functions
of the string tension T. Do this for the case of zero friction only. In par-
ticular, what is the tension T required to keep m; at rest relative to the wedge
m;?

208. A block resting with large friction on a flat car can be considered as a
particle concentrated in its center of gravity. The flat car, on frictionless
wheels, is pulled to the right with a force 7. Find the force T at which the
block will tip over, in terms of such letters as you may find it necessary to use.
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ProrEM 208. PrOBLEM 209.

209. In a flyball governor, the following dimensions hold:
a=2in, I=10in., w=2Ib, W=10100b
and the apparatus turns at 200 rpm. Calculate the angle «,
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210. A chain of 4-ft length lies on a smooth horizontal table with 3 ft of its
length, while 1 ft hangs down. How long does it take the chain to fall off the
table, starting from rest? Use Fig. 165 of page 193 and a table of hyperbolic
functions, if one is available.

I

ProsLEM 210. ProBLEM 211,

Y&

211. A flexible chain of total length [ is lying partly on a 60-deg smooth
inclined plane and partly on a 30-deg smooth plane, joined at the top.

a. Determine how the length ! must be divided between the two planes so
that there be equilibrium permanently.

b. Derive the equation of motion, starting from rest from a position that
differs by a distance a from the position of equilibrium.

¢. For l = 3 ft, divided into 18 in. on each of the planes, find the time in
seconds for the end of the chain to slip over the top, starting from rest.

212. Figure a shows a thrust ball bearing in which each ball is supported at
three points. The top race rotates while the bottom race stands still. Show
that this can take place with pure rolling contact on the three pointsof the ball
without sliding.

2%,

PROBLEM 212,

a. Find the instantaneous axis of rotation of a ball.

In Fig. b the balls are supported at four points, in a symmetrical way. Isit
possible to rotate the upper race relative to the lower one without slipping on
the balls?

b. Determine how the locations of the two upper points of contact have to
be modified in order to obtain a proper, non-slipping, four-point bearing.
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Figure ¢ shows a combination thrust and axial bearing. Where is the in-
stantaneous axis of rotation of each ball?

213. Consider once more the bar of Problem 178 sliding with its ends along
two perpendicular tracks.

a. Determine the location of the velocity pole.

b. Find the pole curve on the z, y plane, i.e., on the bottom sheet.

¢. Find the pole curve on the plane of the ladder, i.e., on the upper trans-
parent sheet. Describe the motion in terms of a rolling of the latter pole
curve over the first one.

214. This is not a problem in kinematics but one in geometry. You are
advised to work it in order to appreciate the mechanisms of the next two prob-
lems, which are among the most beautiful
ever invented.

The figure shows a circle of radius re
and center 0, with an interior point P.
Through P is drawn the chord perpendic-
ular to the radius OP, and then two
tangents are drawn to the circle, leading
to the point Q.

a. Prove that rpre = 73 PropLEM 214.

Thus, for a given circle, rq is rz/ r, and the point @ is said to be the tnversion
of the point P with the respect to the circle of inversion. Now, if point P
describes a path or figure, point @ describes another figure, which is called the
“inversion” of the figure P with respect to the circle of inversion.

b. Prove that if point P describes a circle, point @ likewise describes a circle,
or in other words, prove that circles transform into circles by inversion. Do
this by writing the equation of an arbitrary circle in the z,y coordinate
system and then transform this equation into polar coordinates r, 8. The
equation of the inverted curve is found by replacing r by r3/r in the equation
and by leaving 6 unchanged. Note that the inverted equation has the same
structure as the original one and hence represents a circle.

¢. Draw a few circles with their inversions in order to get the feel of the
situation. Show that if the P circle is drawn to pass through the point O,
then the @ circle must pass through the point at infinity, and hence must be a
straight line. Draw two such circles through O, a small one inside the inver-
sion circle, and a larger one intersecting it, and find the inversions of those two
circles.

215. The figure shows the mechanism of Problem 174, modified in that
point P now is guided by the link O\P to move on a circle. The dimensions
have been so chosen that ZPOR = 30°, the long links L = 5 units, the short
ones! = 3 units. Verify that the circle of inversion then must have a radius of
4 units, about O as center, as drawn. The path of point Q is a straight line.
The thin line 04 shows the extreme position to which the mechanism ecan move.
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Here the distance 0Q = L + ! = 8 units, and the six bars of the inversor are
all on top of each other along the direction OA.

a. If point P is given a velocity
vp, necessarily vertical in the posi-
tion shown, find by graphical con-
struction the velocities of the points
R and Q.

b. Suppose we omit the link O,P
and replace it by a link from point
Q instead. Where does the ground
pivot of that link have to be placed
in order that point P describe a
straight-line path?

The device was invented in 1860
by Peaucellier, a lieutenant in the
French Navy, about a century after
Watt’s parallelogram (page 203). PropLEM 215,

During that century many other

linkages had been described that could transform a circular into a rectilinear
motion approximately, but Peaucellier’s was the first exact solution. See the
article on Linkages in the “ Encyclopaedia Britannica.”

216. Another linkage for producing straight-line motion described in the
“Encyclopaedia Britannica” is due to Hart (1875). It consists of four bars

. o/
~Sicte of inver™”
ProsLEM 216,
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only—AB and CD of equal length [, and AD and BC of equal length L, pivoted
together at their ends as shown. The mid-points P and @ of the long bars
are not attached to each other. Hart has proved (you don’t have to do it) that
if the mechanism is moved about the fixed pivot O, the points P and @ remain
on a straight line through O and are inversions of each other, as shown in the
sketch.

Now the point P of AD is guided on a circle by the link POy, and as a
consequence, point @ of BC will move on a straight line.

The problem is to determine graphically the velocity of @ in terms of the
given velocity of A, in the fully drawn central position of the device. The
dimensions are AB = (D =1 =3in, AD =BC =L = 7in.

217. A Walschaert type of locomotive valve gear is shown in the sketch.
All dimensions are expressed in terms of the main-crank radius 04, which is
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ProsreM 217,

our unit of length. Then the connecting rod AB = 4. The steam valve V
is driven partly by the crosshead B, through links with hinges at C, D, E, and
F, and partly by the eccentric crank OG, the eccentric rod GH, the link HKL,
pivoted at K, and the radius rod LM, pivoted to the bar DE at M. For
simplicity, assume that H, K, and L are in a straight line, perpendicular to
OB, GH, or CD and parallel to DE. Further let OG = 0.5, HK = 0.5,
KL = 0.3, BC = 0.75, DE = 1.80, ME = 0.36, EF = 1.50. The angles of
0OA and OG are 45 deg with respect to the horizontal OB, and EF is parallel
to ML.

Assuming a velocity vp of the piston, determine the velocity of the valve
by graphical construction.

218. A 90-deg rocker, pivoted at its
corner O, carries two guides in which
blocks can slide freely. Each block is
pivoted to the end of a rod, the other end
of which is pivoted to the ground. All
angles shown are 90 and 45 deg. The
lengths are OA = AB = 20C = 2CD,
The velocity of block C is given.

a. Determine graphically the velocity
of block A.

b. Look at this system in the light of
Fig. 146 (page 168) and see what you can
see..

ProBLEM 218,
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219. Return to the floating pendulum of the Toledo system (Problem 47).

a. What is the path described by the points C when the load P varies
from the maximum value shown to a minimum value when the weights W are
down?

b. Prove that the point C and the points of tangency of the bands a and ¢
on their respective circular arcs b and d are all three lying on a straight line.

¢. What is the velocity pole of one of the pendulums?
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PrOBLEM 219.

220. If in Watt’s parallelogram (page 203), the bar OC is not made equal in
length to DF, but half as long (DF = 20C), and if the anchored hinge F
is still located vertically below the mid-position of point A, find what other
changes in the dimensions have to be made in order to obtain decent operation.

221. Prove that for a plane body with zero velocities (starting from rest),
the acceleration pole coincides with the velocity pole, by using an argument
employing figures like Figs. 178 and 181 (page 206).

222. A linkage of the dimen-
sions shown is moving through the ¥~
45-deg position shown, with the
bar AC turning clockwise at a
speed of 1 radian/sec and zero
angular acceleration.

a. Find the velocity of D and
the angular velocity of BD in this
position.

b. Find the acceleration of C.

¢. Find the acceleration of D. ProBLEM 222.
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228. On page 210 it is shown that the location of the acceleration pole of
an accelerated rolling disk depends on the angular velocity of the wheel, or
rather on the ratio of the accelerations aw (horizontal, of the wheel center, due
to acceleration) and aw? (radially inward, of a point on the periphery, due to
angular speed). The text shows that for ai/aw? = 0, the pole is at the wheel
center, and for aw/aw? = , or for w = 0, the pole is at the bottom contact
point. Prove that the locus of the acceleration pole for values aw/aw?
between — 0, 0, and 4 is a circle, half as large as the wheel periphery
passing through the above two points.

294, For the third time we look at the sliding rod of Problems 178 and
213, this time restricting it to a position OAC = 45°.

a. Let the point B have a velocity v in a direction tangent to the bar
(verify that this is physically possible), and let the tangential acceleration of
point B be zero. Find the accelerations of points A and C and find the location
of the acceleration pole.

b. Let the point B have zero velocity, but let it have a tangential accelera-
tion #. Now find the accelerations of A and C and the location of the accelera-
tion pole.

¢. Combine the two previous states of motion, giving the center point B a
tangential velocity v, and a tangential component of acceleration v,. Find the
location of the acceleration pole.

225. Read the story explaining Fig.
181 on page 206. In the figure with PLS
this problem, the construction has been N
repeated in the sequence shown; first N
point 1, then 2, etc., the quantities 6 AN
and 7 being angles. After the pole N
P = point 8 has been so found, prove N
by geometry that angle 8-2-4 equals 46 3
angle 8-1-3. Pi)s

Hint: Prove first that triangle 1-2-8 4
is similar to triangle 5-2-4. ProBLEM 225.

226. Consider a three-bar linkage as shown in Fig. 176, page 201, but
with bars AB and CD parallel and vertical, and with bar BC horizontal.
The lengths are: AB = 1 ft; BC = 2 ft; CD = 2 {t; so that the bearing D
lies 1 ft lower than A. Bar AB has a constant w = 10 radians/sec in that
position. Determine the acceleration pole of the horizontal bar BC.

227. Return to Peaucellier's linkage of Problem 215. If, in the central
position shown, the point P moves with constant velocity through its circu-
lar path, determine graphically the accelerations of the points S and Q.

228, Consider the aircraft-engine speed-reduction gear of Problem 153, in
which the central or sun gear is rotating at uniform velocity w, and the outer
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gear is anchored at rest. Find the velocity pole and the acceleration pole for
one of the planet gears.

229. A vertical rotor is suspended from a thrust bearing and supported
sidewise by two journal bearings like the generator
in a hydroelectric power station. The rotor itself
is completely balanced, and when it is rotating, the ZWIZ
journal bearings experience no forces. For our 7
analysis we can disregard the mass of the rotor, X
which from now on is supposed to be weightless.
Now we attach two small masses m on the periph- e ==~ O~ - > )
ery in different places, 180 deg apart angularly, m__ _i_

]

as shown.

a. Express the bearing forces caused by this in -E:
terms of m, of the dimensions, and of the angular m —
speed w. ol o ¢

b. Formg = 1lb,d = 6ft,a = 6ft,b =c = 3 =
ft, and 500 rpm, what are these bearing forces ProBLEM 229,
numerically?

280. A piston weighing 10 Ib is moved harmonically (page 159) through s
total stroke of 8 in. (crank radius, 4 in.) at 1,000 rpm. Calculate the force in
the piston rod, neglecting friction.

231. A symmetrical locomotive side rod weighs 150 Ib, and is attached
to crankpins on two driving wheels. The rod is 7 ft long; the two wheel centers
are 7 ft apart; the distance from a wheel center to a crankpin is 2 ft, the wheel
diameter is 6 ft., and the locomotive is going forward at a constant speed of
60 mph. The “crank” is 45 deg from the vertical, as shown.

a. Determine the forces exerted by the side rod on each crankpin.

b. Let the ends of the rod each weigh 25 lb, and let the remaining 100 lb
be uniformly distributed along the length of the rod. Sketch the bending-
moment diagram of the rod and find its maximum bending moment.

ProBLEM 231. ProBLEM 232,

232. A flywheel consists of a heavy rim and very thin spokes. For sim-
plicity we neglect the effect of the spokes. When the flywheel rotates, each
element of it has a centripetal acceleration. TIsolate 180 deg of the fiywheel,
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and set up its d’Alembert equilibrium condition, assuming the cross section
of the material A to be so small that all mass is concentrated in the circular
center line of radius a.

a. Write the condition so that it shows the magnitude of the tensile hoop
stress in the material.

b. What is the hoop stress, expressed in pounds per square inch, for a steel
fiywheel (weighing 0.28 Ib/cu in.) of 4 = 20 sq in., a = 3 ft, at 500 rpm?

233. A cylindrical vessel partly filled with water is rotated at uniform
speed about its center line. After some time all the water rotates with the
same angular speed as the vessel, as a rigid body, and it has then acquired a
surface that is no longer flat. Set up the condition of equilibrium for a small
particle of water in the rotating surface, and from it deduce the differential
equation of the surface. Integrate this equation and so find the shape of the
surface.

For a vessel of 10-in. diameter, determine the rpm required in order that the
water in the center line be 5 in. below the water at the periphery.
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ProsLEM 235.

2384, For the fourth time we return to the elliptic motion of Problems 178,
213, and 224, so called because every point of the bar describes an elliptic path.
Consider the 45-deg position, and let the center point B have no tangential
acceleration. The acceleration pole for that case was found to be the origin
O in Problem 224. Calculate the inertia forces on the bar, sketch its bending-
moment diagram, and determine the amount and location of the maximum
bending moment. Also determine the forces on the two pins at A and C.

286, A flat plate of the dimensions shown has a total weight of 70 1b.
Calculate the moments of inertia about the axes A4 and BB,
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236. A solid steel rotor of the dimensions shown weighs 2,100 Ib. Caleu-
late the moments of inertia about the axes AA and BB.

ProBLEM 236. ProBLEM 237.

237. A steam-turbine rotor is idealized into a truncated cone with a wall
thickness equal to one-eighth of its outer diameter all along its length. Derive
a formula for the moment of inertia about the axis of rotational symmetry,
expressed in Dy, D, 1, and p, the mass per unit volume.

238. Consider a Z-shaped flat plate of 14-sq in. area and a total weight of
14 Ib.

a. Determine the moments and product of inertia about the set of axes

through the center of gravity shown in the figure.
From the Mohr-circle diagram, find the direction of the principal axes
through O and determine the maximum moment of inertia.
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ProBLEM 238. ProsLEM 239,

239. A flat rectangular plate, 2a by a, with one quarter removed has a
total weight 34W.
a. Find the moments and product of inertia about the z and y axes through

the corner O.
b. Find the center of gravity G and the moments and product of inertia

about axes through G parallel to the z and y axes.
c. Find the direction of the principal axes through G by means of a Mohr-

circle construction,
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240. A three-bladed bronze ship’s propeller has a diameter of 10 ft. Nine
stations are marked out on a blade 6 in. apart radially, and the cross sections
at those stations are as follows:

Station No. 1 2 3 4 5 6 7 8 9
Radius, ft 1 1% 2 24 3 8% 4 4% 5
Area, 8q ft 0.40 0.50 0.55 0.58 0.60 0.58 0.50 0.37 0

The hub with the shaft inside it is considered to be a solid cylinder of 2-ft
diameter and 3-ft length. Bronze weighs 0.33 Ib/cu in. Find the moment of
inertia of this propeller in terms of I as well as in terms of WR?, in each case
stating the units in which the answer is expressed.

ProBLEM 240.

241, Determine the moment of inertia, about its axis of rotational sym-
metry, of a solid cone of base radius ro, height &, made of a material weighing
v = pg Ib/cu in.

ProBLEM 241, ProBLEM 242.

242. Find the moment of inertia of a solid paraboloid of revolution, of base
radius o and of height &, about its axis of rotational symmetry.

243. A connecting rod of an engine is idealized into a thin circular ring of
radius 71 and weight W3, a thin bar of length I — r; — r; and weight W, and
another ring ry, W.

a. Find an expression for the moment of inertia about an axis perpendicu-
lar to the paper passing through C,.
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b. Without any further caleulations write immediately the moment of
inertia about a similar axis through the other center C-.

¢. Determine the center of gravity G and the moment of inertia of an axis
through it perpendicular to the paper.

d. Reduce the above formulae to numbers with Wy = 3 Ib, W, = 1 1b,
W1 = 21b,7'1 = 2in.,7'2= 1in.,l=8in.

I

PROBLEM 243. ProBLEM 244,

244. A steel plate 1 in. thick, 2 ft wide, and 2 /3 (about 3.46) ft long is
mounted in bearings to rotate about a diagonal as shown. The weight of
1-in. steel plate is 40 1b/sq ft; the plate rotates at 100 rpm, and the distance
between bearings is 5 ft. Calculate the bearing reactions, and in particular
state the maximum and minimum values (in time) of the bearing reactions
in the vertical direction and also in the horizontal direction.

246. In discussing Atwood’s machine on page 191,
we considered the pulley to be without inertia. Now
we drop that simplifying assumption.

a. Derive formulae for the acceleration of the sys-
tem as shown, and for the tensions in the two branches
of rope.

b. Let W =2 lb, w = 0.1 Ib, and let the pulley
be & uniform disk of 3-Ib weight and 6-in. diameter.

ProBLEM 245,

246. A solid steel horizontal eylinder of 3-ft diameter and 5-ft length is
supported in oil-lubricated journal bearings of 8-in. diameter with an equiva-
lent coefficient of friction of 2 per cent. If the rotor is spinning at 1,800
rpm, how long will it take to come to rest as a result of bearing friction alone?

247. A gear train consists of three gears of diameters d; = 2in.,d; = 4in.,
and ds = 8 in. having moments of inertia I1, I», and I; to be calculated from
the fact that all gears are uniform brass disks of 14-in. thickness. On the
shaft of the smallest gear is mounted a steel flywheel I, of 10-in. diameter and
2-in. thickness. A torque M, = 5 in.-b is applied to the largest gear.
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a. Derive the formula for acceleration of the largest gear in terms of
letters only.

b. Substitute numbers to find the numerical answer.

c. If the system were replaced by a single flywheel at the large gear, how
large would this “equivalent flywheel”” have to be made in order to produce
the same acceleration for the same torque?

ProBLEM 247,

248, A ship’s rudder of moment of inertia I, about its axis of rotation is
operated by hand through a long endless cable wrapped around a capstan
71, which is on the same shaft with a gear r5, which meshes with a pinion r; on
the shaft of the steering wheel r,, The wheels 1, 73, 3, 74 have moments of
inertia Iy, Is, I, 1,; the weight of the entire cable is W, and the weights of the
various pulleys and other parts not mentioned specifically are negligible.
Calculate the “equivalent moment of inertia” of the steering wheel, i.e.,
the ratio between the torque applied to the steering wheel and its angular
acceleration.

Iy
P,
Ny
o]
2

a
4
.

ProsLeM 248. ProBLEM 249,

249. A bar of length [, pivoted at its top O, is held in a 45-deg position by
finger support at the bottom end. The bar is not uniform, its center of gravity
is at distance a from the pivot, and the moment of inertia about the pivot is Io.

a. Calculate the pivot reaction and the finger pressure while at rest.

b. Calculate the bearing reaction the instant after the finger has been with-
drawn, and the bar starts to swing down.
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260. A uniform stick is pivoted at one end and supported at a fairly small
angle . To its end are attached two very light cups, the outer one of which
contains a marble. When the bar is allowed to fall to the horizontal position
on a felt pad, it is seen that the marble is no longer in the outer cup, but has
jumped to the inner one. Explain this experiment.

ProsLEM 250.

261. Return to the Maltese-cross mechanism of Problem 181. If the
driving disk O; has a uniform angular speed ¢, with ¢ = 0, and the driven disk
has a moment of inertia I, find the maximum value of the torque on either
disk and the maximum value of the force between the pin and the slot, assum-
ing no friction.

Hint. In differentiating remember that ¢ is constant. After finding the
answer for the force as a function of ¢, plot it and look before proceeding
to find the maximum.

262. On page 237, Fig. 214, it was seen that a compound pendulum con-
sisting of a uniform rod of constant length ! could be made to swing faster by
moving its fulerum to a proper location along the bar. Now consider a similar,
but yet different problem. Let a bar of length ! be pivoted at its end.

a. Is it or is it not possible to make this pendulum swing faster by welding
on an additional piece of length « to the rod, either at the top end or at the
bottom end?

b. Answer the same question for a rod pivoted in its center point.

263. A pulley wheel of radius r carries a uniform chain of length 2a <4 =r
and of weight ug per unit length. The moment of
inertia of the pulley is Io. Assuming no friction in the

pulley axle and large friction on its periphery, derive =~ ¥ 7% j'
the equation of motion, starting from rest from an i i
initial position described by a — , and a + o, until ax ;
the moment that the left overhang becomes zero (see L arx
page 193 and Problem 210). |:
264. In the previous problem, calculate the horizon- _i

tal and vertical components of the force on the pulley
axle during the motion (as functions of the time).

266. A spool-like wheel of total weight 10 Ib has en outside diameter of 6 in.
It has a thin slit cut into it down to a diameter of 2 in., and with this it can roll
without sliding on a thin 45-deg incline. A weightless rope attached to the

ProsrEMS 253 and 254.
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center point passes over a weightless and frictionless pulley to a hanging weight
of 10 Ib. Calculate the acceleration of the assembly.

/77773 Z
x
2
X
ProBLEM 255, ProsLEM 256.

266. A system consists of a square weight W and two frictionless pulleys,
one supported from the ceiling and one floating as shown. The pulley wheels
also weigh W Ib; their radius is » and they are uniform disks. Find
the three rope tensions T'1,T2, and 7', and the acceleration of the square weight.

267. A uniform bar of length 2! and weight W is suspended from its center
point C by a weightless bar of length I, pivoted at its top A. There is no fric-
tion in the top pivot 4.

a. Find the frequency of small oscillations and describe the motions of the
two bars, assuming that there is no friction in the pivot C.

b. The same question, assuming large friction in C, so that the joint is a
rigidly clamped one.

P

04
r r
4 N
| © | Al 1] 2
C [)
PrOBLEM 257. ProsLEM 258,

268. This is the classical problem of Grandma and the Cat. Grandma sits
sewing, drops her spool of thread on the floor, and the cat paws it out of her
reach. Under what circumstances can she retrieve the spool by pulling at the
thread? Assume sufficient friction on the floor so that the spool will roll with-
out slipping.

259. On pages 210 and 244, and in Problem 223, the accelerated rolling
motion of a uniform disk was discussed. Let such a disk be subjected to a
horizontal force P at its center (and consequently have a friction force P/3
at its bottom contact point). The acceleration & is determined by the above,
but the angular speed may have any value, depending on the length of time
that P has been acting. Write the moment equation about the center of
gravity of the wheel and obtain the answer for @ (independent of w). Then
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write the moment equation about the acceleration pole (Problem 223) and
show that this leads to the same, correct, answer for @, independent of the ratio
aé/aw?, or independent of the location of the acceleration pole in the wheel.

260. A body consists of a uniform bar of length ! and mass m. To it is
attached at one end a concentrated mass m/2. At what point can the bar be
struck, in a direction perpendicular to itself, without causing any acceleration
of the concentrated end mass?

261. At what height above the table does a billiard ball have to be hit in
order that it will not slip on the table, but start in a pure rolling motion?

ProsreEM 260. ProBLEM 261. PROBLEM 262.

262. A uniform bar of length ! and weight w rests against a wall without
friction at B and is hinged by a frictionless ball bearing at A to a roller. The
roller is a uniform eylinder of weight W and radius r, resting on the ground
with sufficient friction to ensure rolling without sliding. The system starts at
45 deg, as shown, from rest (zero velocity).

Let a. be the (horizontal) acceleration of A in this position. Then

a. Find the acceleration of B by kinematics.

b. Find the acceleration of G and the angular acceleration about G by
kinematies.

¢. Introduce the reactions of the bar by proper letters and set up Newton’s
equations for the bar.

d. From the above, solve only for the horizontal reaction at A.

e. By Newton’s laws find the relation between this reaction and the hori-
zontal acceleration a. of the rolling cylinder, and solve for a..

263. A uniformly solid cylinder of /‘01
radius r can roll without sliding in a track AN
of radius R. VA4 R
a. Draw the forces acting on the cylin- / \
der in an arbitrary position ¢, and write £

Newton’s equations for that position. \
Eliminate the two unknown forces be- \
tween these equations and arrive at a k
single equation in terms of ¢ and its /
derivatives.

PROBLEM 263,
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b. Compare this result with Eq. (9d) (page 185) and find the frequency
of oscillation of the cylinder for small angles ¢.

¢. What would be the frequency if the friction were zero and the cylinder
could slide freely?

264. A rotor with journals of 6-in. diameter is placed on two tracks with a
radius of curvature of 10 ft. By experiment the period of a full back-and-
forth rolling motion is found to be 18.0 sec. 'The rotor is then placed on scales
and found to weigh 10,000 lb. Determine from these two measurements the
moment of inertia of the rotor, using the result of the previous problem.

i
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PrOBLEM 264.

266. From the theory on page 249, deduce the linear acceleration of the
bottom point A of a frictionless uniform sliding ladder in the position ¢ = 60°.

266. A uniform cylinder of radius r and weight W; can roll without sliding
on a horizontal plane. On its center C it carries a frictionless ball bearing
forming the pivot of a compound pendulum of weight W, with a distance
CG = a.

a. Draw all the forces acting on the cylinder as well as on the pendulum
and write all Newton’s equations. Eliminate between these all forces, so that
only two equations remain, in terms of the quantities r¢ and 6.

267. A particle is sliding down a rough inclined plane of angle « and frie-
tion f. It starts with a velocity vo. Calculate the velocity v, it reaches after
it has moved a distance s along the plane.

| y Y
T |
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ProsLEM 266. ProBLEM 268.
268. A bead is strung on a thin, stiff wire, along which it can slide without

friction. The wire is shaped according to the parabola y = 2x% in a vertical
plane. The bead starts without initial velocity at the position z = 1 ft,
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y = 2 ft. Calculate the horizontal speed of the bead when it passes through
the bottom point z = 0, ¥ = 0 of the parabola.

269. A weightless spring of stiffness k& = 40 Ib/in. is mounted vertically on
a solid horizontal floor. It is deflected 14 in. from its non-stressed position
by a weight of 1 Ib pushed down by hand. When the hand pressure is sud-
denly removed, the weight will be thrown upward by the spring.

a. How far will the bottom of the weight rise above the unstressed top of
the spring?

b. What is the speed of the weight at the moment that it leaves the
spring?

270. The figure shows a rear-axle bicycle coaster brake of the familiar
“New Departure” construction. It consists of a non-rotating central axle
1, to which two other parts 2 and 3 are securely fastened. The hub shell 4
can rotate on the ball bearings and carries the wheel spokes attached to the
flanges shown. The chain sprocket, part 5, which can rotate relative to the
axle through a small angle, is securely fastened to part 6, which is made with a
coarse large-pitch screw thread into which meshes part 7. When forward
drive is applied at the bicycle pedals and hence to the sprocket 5, part 7 is
screwed by part 6 to the right and makes a self-gripping friction lock in the
inside conical hub shell, part 4, thus driving the wheel. When torque at 6 is
reversed, part 7 is screwed to the left and engages the teeth 8, of a non-rotating
part 8, causing pressure on the disks 9. There are 11 stationary and 10 revolv-
ing brake disks 9, which can slide freely along the axle or the hub, but cannot
rotate with respect to them.
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ProsreM 270,

a. Calculate the braking force on the bicycle, assuming no slip between the
rear tire and the ground, based on the following dimensions: The push of the
boy’s right foot is 40 lb, equal to 50 per cent of his weight. The kine-
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matic chain from his foot to part 7 is such that for 1-in. displacement of his
foot, the part 7 moves ¥{s in. to the left relative to the axle. The screw
thread 6 and 7 is 75 per cent efficient as a torque-force converter. There are
20 surfaces of disk contact; the average disk radius is 34 in., and the coefficient
of friction is 15 per cent. The outside diameter of the tire is 26 in.

b. Assuming the load on the rear tire to be 80 Ib, and the friction between
tire and road to be 100 per cent, what braking force from the foot on the pedal
will cause the rear tire to skid on the road?

271, An English bicycle usually has friction brakes on the inside of both
wheel rims, operated by grips on the handle bars, each hand servicing the
brake on a wheel. The brake shoe is a small block of rubber, pulled upward
against the rim by a lever having an advantage of about 10 to 1 with respect
to the hand. When the bicycle and its rider weigh 200 b, how many feet of
distance does it require to come to a stop from an initial speed of 10 mph,
when the gripping force of each hand is 10 1b and the coefficient of friction is
0.3? Neglect the small difference in diameter between the inside of the rims
and the outside of the tires.

272. A two-basin tidal power plant such as was discussed for Passama-
quoddy Bay, Maine, in the thirties, consists of an upper basin U and a lower
basin L, of, say, 40 sq miles area each, both dammed off from the open tide-
water T. The powerhouse P is located on a peninsula between the two
basins. Assume that the outside tides are 20 ft, sinusoidally varying in time
with a period of 1214 hours. By opening and closing gates in the dam, the
water level in the upper basin is kept as high as possible, always at least as
high as the open tide T, and the lower basin is kept at as low a level as possible.
The powerhouse is in continuous operation, the water flowing through it always
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PRrROBLEM 272,
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from U to L, in such a manner that the level of U decreases and that of L
increases at the rate of 10 ft in 34 X 1214 hours, as indicated in the sketch.
Calculate the average available horsepower of the plant, using partly a graphi-
cal process on the figure.

273. A windmill driving an electric generator can be built to extract 30 per
cent of the kinetic energy of the wind passing through the propeller disk and to
convert it into electric energy. The largest windmill built so far (1941 in
Rutland, Vermont) had a propeller-disk diameter of 175 ft, Calculate the
kilowatt output of the generator, for a wind velocity of 30 mph, using the fact
that air is 800 times as light as fresh water.

274. A four-cylinder automobile engine of the usual four-cycle type has a
bore of 314 in. and a stroke of 4 in. Its indicator diagram is shown in the
sketch, the suction and exhaust quarter cycles being represented by the hori-
zontal line doubled up. The upper line of the diagram is the firing quarter
cycle, and the other line is the compression quarter cycle. The area of the
diagram is the same as that of a rectangle on the 4-in. base with a height of
75 1b/sq in. Calculate the indicated horsepower of this engine at 2,000 rpm.
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ProOBLEM 274, PrOBLEM 275.

276. A steam-turbine ship drive consists of a high-pressure (HP) and a low-
pressure (LP) turbine, each rotating at 5,000 rpm and each developing
10,000 hp. They drive the propeller shaft at 100 rpm through double reduc-
tion gearing with an intermediate speed of 1,000 rpm.

a. Calculate the torques in the turbine shaft, the intermediate shaft, and
the propeller shaft.

b. Calculate the tooth pressure forces on the various gears. The pitch
radius of the high-speed pinions is 3 in., that of the low-speed pinions is
6 in.

276. A very heavy train of coal cars has to be pulled up a 2 per cent slope at
slow speed. The train resistance is such that without brakes or locomotives
the train would just start rolling down a slope of 0.002, and this train resistance
is independent of speed for the slow speeds considered here. When the loco-
motive starts from rest on this slope, its drawbar pull is 1.10 times (10 per
cent greater than) the draw-bar pull for pulling up at constant speed.
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a. How much time will it take to bring the train speed up to 10 mph and
how far will it go in that time?

b. For a train weighing 10,000 (short) tons calculate ths required drawbar
pull, the required horsepower rating of the locomotive(s), and the necessary
weight carried by the driving wheels, if the coefficient of friction under those
drivers is 25 per cent.

277. The sketch shows two constructions of a band brake, fitted through
270 deg around a drum of radius r, rotating at N rpm, and operated by a hand
force P at the end of a lever. The coefficient of friction is f. Derive the
expression for the horsepower dissipated in each case.!

ProsrLeM 277.

278. A crank mechanism has the usual dimensions » and [, and the angles
are denoted by ¢ and ¥ as on page 170.

a. Let a force P be acting on the piston, which is held in equilibrium by an
appropriate moment M at the crank. If the angle ¢ is allowed to increase
by de, and if as a consequence P is

allowed to displace through a distance 7
dz, the work P dz of the piston equals
the work M dp = Tr de of the crank ‘
. . P P PN

(see page 140). Proveit by expressing > N7
M in terms of P, and dz in terms of ¢
and y.

b. In the crank mechanism let the ProbreM 278.

moment of inertia of the crank be I.;

let the connecting rod consist of masses m, and m., concentrated at the piston
and crankpin, and an additional mass m,, distributed uniformly along the rod.
Further let the system start from rest, from the position ¢ = 0, and proceed
through half a turn to ¢ = 180° under the influence of a constant external
piston force P. 'What is the speed ¢ at the end of that half revolution?

! For several other types of brakes and clutches, see Marks’ ‘Mechanical
Engineers’ Handbook,” 4th ed., pp. 942-947.
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279. A precursor to the now-familiar helicopter was the autogiro, an air-
craft sustained in the air by a large-diameter horizontal rotor of the same
general appearance as a helicopter. Whereas the rotor of a helicopter is
power-driven, the rotor of the autogiro is freely spinning without any power.
Before it can take off from the ground, the rotor has to be set rotating by a
starter, and in the latest model the starting rpm of the rotor was made about
twice as large as the rpm in the air. While bringing the rotor up to speed on
the ground, the angle of attack of the rotor blades was kept at zero, so that no
lift occurred. Then, at take-off, the pilot would suddenly increase the angle
of attack on the blades, which would lift the aircraft off the ground. The
kinetic energy of the rotor would diminish in the process.

Consider an autogiro with a rotor constituting 25 per cent of the total
weight, and consisting of four blades that are to be considered uniform radial
bars. Just before take-off the peripheral speed of the rotor blades is 400 ft/sec,
and in ordinary flight it is 200 ft/sec. Assume that the lifting process is 50
per cent efficient, 7.e., that half of the loss in energy of the rotor is converted
into lifting work. How high will the aircraft be shot up?

280. A double-block brake is installed on an elevator-hoist motor, and is
actuated at P by the magnetic pull of a solenoid.

a. Derive an expression for the number of revolutions required to stop the
rotor of moment inertia I from an initial rpm N.

b. Substitute numbers:r = 5in., ¢ = 9in,, b = 3 in., ¢ = 9 in., P = 100
lb, gI = 50 1b-ft2, N = 1,800 rpm, f = 0.30d = 7 in.

ProsrEM 280.

281. An electric induction motor is being calibrated by means of an elec-
tric dynamometer. The shaft of the motor to be tested is coupled to the rotor
4 of the dynamometer. The dynamometer stator B is again mounted in
ball bearings. It carries an arm counterweighted at C, so that its center of
gravity is in the center of the dynamometer 4. The torque of the motor is
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ProBLEM 281.

transmitted from A to B magnetically through the airgap and finally carried
on the scale. The measurements made are (a) the motor input: 50.0 kw,
(b) the motor speed: 1,750 rpm, (c) the scale load: 47.0 Ib.

Calculate the efficiency of the motor under test.

282. An express passenger elevator in a tall office building
consists of an empty cab of 3,000 Ib (calculated to weigh 5,000
1b when full of passengers), a counterweight of 4,000 Ib, con-
nected by a cable slung over a 3-ft-diameter sheave. The
cable and sheave weights are to be neglected. The sheave is
driven through a 20:1 reduction gear by an electric motor,
which can be considered as a solid steel cylinder of 1-ft diam-
eter and 1-ft length. The service speed is 900 ft/min and the
acceleration or deceleration is g/10.

a. Calculate the horsepower required of the motor when
accelerating the empty cab downward.

b. When running with a full cab at service speed how is the
kinetic energy of the system divided among its three PR;:;EM
components? ’

283. Return to Peaucellier’s inversor mechanism of Problem 215. In the
position shown, let the point P be given a velocity o, and let the mass per
unit length of all bars be m; and let the mass of the joints be negligible.

a. Determine the kinetic energy of the system, partly by graphical con-
struction and partly by calculation.

b. From the result @ find the “equivalent mass” of the point P, i.e., the
(vertical) force required at P to produce unit acceleration at that point in
the same direction.

284. A carriage consists of two axles A, each with two equal wheels solidly
attached to it, a carriage body B, and two connecting rods C, one on each side.
It can roll without slipping on its level rails, but there is no friction anywhere
else. Let ¢ be the angle of the crank radius with respect to the vertical;
let m4, ms, me be the masses of all the wheels, the body, and both connecting
rods, respectively. Let I. be the moment of inertia of one axle with two
wheels about its own center, and let the crank radius be r. and the wheel
radius r,,.
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a. When the system starts from rest from a position ¢, calculate the speed
with which it passes through the bottom position ¢ = 0.

b. Reduce the previous answer to small angles ¢ and then find the fre-
quency of oscillations about the position ¢ = 0.

ProBLEM 284.

286. A cylinder, of which the center of gravity G is at distance a from the
geometric center C, lies on a rough inclined plane a.

a. Derive a condition between a, r, and « expressing that the cylinder
will always roll down the plane, and that it never can roll upward or be in
equilibrium.

b. In the on-the-fence case a, describe the position of equilibrium of the
cylinder and find whether that equilibrium is stable or unstable.

¢c. Let a = r/4, a = 30°, I¢ = mr? and let the cylinder start from rest
from a position where CG is perpendicular to the incline. Calculate the
velocity of point C for four subsequent positions, after rotations of the cylinder
of 90, 180, 270, and 360 deg.

ProBLEM 285. ProBLEM 286,

286. Consider once more the case of Problem 115, this time without any
friction on either wall. If the uniform bar of total weight W and length !
starts without initial velocity from the position A shown, describe the state
of its velocities just before it slams into the vertical wall, position B.

287. A three-bar linkage of three equal lengths I has a base distance of
I(1 + +/2). It is shown in three positions—I, symmetrical upright, II with
one bar on the ground, and IIT with two bars along the same line. Let the
weight of each bar be ws, uniformly distributed along its length; let further
w; be the concentrated weight at each joint. If the system is allowed to fall
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from rest, under the influence of gravity, from position I via III to 11, cal-
culate the velocity of joint A in positions IT and IIL

ProBLENM 287,

288. Consider the grab bucket described in Problem 151. If with an
empty bucket in the closed position the closing rope breaks, the bucket will
swing open. Assuming absence of friction, express the downward velocity
of point C, when C falls down to the same level as B, in terms of such masses
and moments of inertia as you may have to assign letters to.

289. Two light carriages, one weighing W Ib, the other weighing 2W b
(including the passengers), are at rest on a level track close together. Their
passengers push the two carriages apart, without touching ground, so that
they acquire velocities in opposite directions. Assuming that the coefficient
of rolling friction between the carriages and the track is the same for both,
find the ratio of the distances from the common starting point to the positions
where the two carriages come to rest again.

200. A 90-deg pipe bend lies in a hori-
zontal plane and is pivoted at a point O
about a vertical axis. The point O is the
intersection of the center lines of the incom-
ing and outgoing streams of water. If the
cross section of the stream is 1 sq in. and the
velocity is 50 ft/see, calculate the direction
and magnitude of the pivot forceat 0. Con-
gider only the component of that force in the
horizontal plane, disregarding the vertical -
component caused by the dead weight of the ProsrEM 290.
pipe and the water.

291. A small .22-caliber pistol weighs 1 b, and it fires bullets weighing
1{00 lb with a powder charge in each shell weighing }{o0 Ib. The powder has
a chemical energy of one million ft-Ib per Ib of powder, and the firing pro-
cess is 25 per cent efficient (25 per cent of the chemical energy is trans-
formed into kinetic energy; 75 per cent goes into heat).

a. Neglecting the momentum of the powder gases, calculate the muzzle
velocity of a bullet.

b. With a gun-barrel length of 4 in., and assuming constant acceleration of
the bullet while in the barrel, what is that acceleration?
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202. A bullet weighing 1 oz is shot with a velocity of 2,000 ft/sec at a
1-in.-thick piece of soft wood weighing 2 Ib.
The bullet travels clear through it and comes
out at the other end with a speed of 500 ft/sec.
Assume that the support under the block of
wood does not exert a horizontal force on it.

a. Calculate the velocity of the block of
wood after the shot.

b. What percentages of the total original ProLEM 292.
energy are in the bullet, in the block, and dissipated into heat after the shot?

293. A 30-Ib shell is fired straight ahead from a gun mounted centrally in a
B-25 airplane weighing 35,000 lb. The muzzle velocity is 2,400 ft/sec, and
the length of the gun barrel is 15 ft. Assuming constant acceleration of the
shell in the barrel and assuming that the gun barrel is solidly mounted so that
the entire airplane as a rigid body catches the recoil, calculate

a. The force on the plane.

b. The change in speed of the plane.

294. A weightless rope carrying two unequal weights W, and W, is slung
over a pulley of weight Wy, radius 7, and radius of gyration k. At time ¢t = 0,
the smaller weight, W, is going up and the larger one, W, is going down with a
velocity vo.

a. Calculate the time ¢ at which these velocities are doubled to 2v,.

b. If you write the linear momentum equation in the vertical direction with
an actuating force Wo — W), the answer 8o obtained for question a is incorrect.
Explain why.

295. Return to Problem 256, and the discussion on page 265.

a. Calculate the angular speed of the floating pulley 2 sec after starting
from rest, for the case that the radius r = 6 in.

b. Through how many revolutions does the floating pulley rotate during
the first 2 sec?
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ProBLEM 294. ProBLEM 206,

296. A small turntable is eccentrically mounted on a large one by means of
a vertical-shaft motor, ag shown. The eccentric distance is 4 in. The weight
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of the small turntable, together with the rotating parts of the moter, is 10 Ib,
and the radius of gyration is 2in. The large turntable (including the stator of
the motor) weighs 30 Ib and has a radius of gyration of 5 in. Initially the
large turntable is at rest, and the motor is running at 1,750 rpm. The small
turntable is then stopped by means of a magnetically operated brake, no
external forces being applied to the system during this operation. Find the
final angular velocity of the system. The bearings are all frictionless.

297. One of those “old-fashioned” 50,000-ton battleships with a “battle-
ship admiral” on the bridge fires its nine 16-in. guns broadside simultaneously
in a horizontal direction. What is the state of velocity of the ship immediately
after the firing? Assume the ship to be a symmetrical rectangular box of
50,000 (short) tons weight, and of a radius of gyration of 20 ft. Let the guns
be 30 ft above the center of gravity; let each of the nine shells weigh 555 Ib,
and let the muazzle velocity be 3,000 ft/sec.

Ge

ProBLEM 297,

298. Calculate the diameter and the indicated horsepower of a Pelton
water turbine operating at 1,800 rpm under a 2,000-ft head with a single jet
1 sq in. in cross section.

299. A projectile or rocket that can cross an ocean must have an initial
velocity that is almost sufficient to give it unlimited reach on earth by having
it circle the earth indefinitely like a planet close to the earth’s surface. Calcu-
late the speed required for a projectile to circle the earth at 100 miles above
the earth’s surface indefinitely. The radius of the earth is 4,000 miles, and
the gravitational attraction constant g is inversely proportional to the square
of the distance from the earth’s center.

300. A projectile is shot up vertically at initial speed vo. Neglecting air
friction near the earth, calculate the v, required to get out of reach of the earth
altogether (infinitely far away), and also the v, required to get 80 earth radii
away, which is about the distance to the moon.

301. Referring to page 287 and to Problem 299, calculate the ratio of fuel
weight to structure weight of a rocket capable of circling the earth indefinitely.

302. A block of 5-1b weight on a 30-deg inclined plane starts sliding down
from rest.

a. How far does it go during the first second assuming no friction?

b. How far does it go during the first second when the friction is 10 per
cent.

303. A rope slung over a pulley with a completely frictionless bearing
carries on one side a dead weight W and on the other side a man of the same
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weight. The system is initially at rest, and the man is
at the same height as the dead weight. Then the man @

starts climbing up the rope.

a. Discuss carefully what happens to the accelerations,
forces, and displacements in the system, and in particular,
deduce what will happen to the dead weight.

b. What would be the influence of a little friction in
the pulley axle?

c. In some books it is stated that the man is a monkey.
Does that make any difference?

d. Discuss what happens when the man is replaced
by a yo-yo wheel, which rolls down its string.

ProBLEM 303.

304. In the billiard-ball problem of page 283, calculate the loss of energy
due to sliding friction during the time ¢ that slipping oceurs. Do this in two
ways: first, by calculating the energies at time { = 0 and ¢ = ¢, with the results
of page 283, and second, by calculating the path of slip and finding the work
of the friction force directly. In the latter calculation be careful to consider
the details of the slipping motion, and remember that when the ball rolls no
relative slip takes place.

305. A pile of 30-ft length, weighing 40 Ib/ft, and hence of total weight
1,200 b, is being driven into the ground by a ram of'2,400-1b weight. With
the last stroke the ram is dropped from a height of 16 ft, and when it falls
on the pile, the coefficient of restitution ¢ = 0.5. With this last stroke the
pile is observed to penetrate 1 in. deeper into the ground. Assuming that the
retarding force from the ground during that 1-in. motion is constant, and
agsuming that from now on the pile can carry that same force without sinking
in any further, calculate the carrying capacity of the pile.

306. Consider the problem of elastic, oblique impact between two smooth
spheres ry, my and re, m.. Let the sphere
m. stand still and let m, strike it, such that

i
N
the direction of its incoming speed ¥, in- X
. 8 . N
cludes an angle a with the line connecting ~
the two centers and the point of contact at _ f}_
the instant of impact. Assume the friction

between the spheres to be zero, so that they
can slip over each other during the impact ProsLEM 306,
without tangential force between the balls.

Set up linear momentum equations in two perpendicular directions and
solve for the velocities of the centers of m; and m, after the impact.

807. Show that a marble on the level floor of a railroad car, on level track,
that is being accelerated by a locomotive has a motion relative to the car as

N
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if the marble were on an inclined floor in a car standing still. Describe the
apparent inclination of the floor in terms of the acceleration.

308. A simple pendulum-ef-length [ is at rest, suspended from the ceiling
of a vehicle. The vehicle is suddenly given a horizontal acceleration a, which
persists indefinitely from that time on.

a. Find the differential equation of motion of the pendulum relative to the
vehicle.

b. Assuming that a is small with respect to g, so that the pendulum angle
is small, find the solution to the differential equation, and describe the motion.

809. A man stands in a subway train without being able to reach a strap
to hang on. As long as the acceleration of

the car is zero, the man can stand upright

without trouble, his center of gravity being

located vertically above his center of support. G .'_T ¢
Even when the car has a constant accelera- A

tion 8, he can stand quietly, but no longer \:l |
upright. 3 ) —I . L—

a. Find the relation between the horizon-
tal car acceleration § the height & of the
man’s center of gravity @, and the horizontal distance = between his feet
and G.

b. Find the relation between the constant “jerk” & and the necessary
velocity # of the man’s feet.

c. If s equals 0.25 g/0.1 sec. and k equals 4 ft, what is the required velocity
z?

310. Reread the story of page 31 about sailing against the wind, especially
the concluding remark. In this problem we consider a boat sailing with a
speed V, in a direction perpendicular to the wind velocity V., the relative
wind speed including an angle o = tan=* V.,/ V), with respect to the boat center
line. The sail is set at angle 8 with respect to the boat center line. The
wind force F., on the sail is assumed to be perpendicular to it, proportional to
the angle of attack and to the square to the relative wind velocity.

ProsrLEM 309.

Fo = Cuola — BV}
"T'he resisting force of the boat against forward motion through the water is
assumed to be

Rbon. = Cb V%

a. Set up the equation of equilibrium and prove that

C, . Ve Vi
c.= sin 8 (tan 1 7. ﬁ)(l + VE)



PROBLEMS 433

For a given boat and sail C; and C, are known constants, and if the wind
velocity is given, there are two unknowns in this equation, V; and 8, and they
can be plotted against each other for the purpose of finding the sail angle 8 for
which the boat speed V, is a maximum. This can
be done by numerical computation only, because the
equation is too complicated. But we can jump ahead
and suspect that 8 will be a small angle, and also
that the maximum boat speed will be considerably
greater than the wind speed, so that a likewise is a
small angle.

b. Simplify result a for small angles a and g, set-
ting sines and tangents equal to the angles themselves,
and neglecting higher powers of the angles.

The constants C,, and C, depend on the construc-
tion. We strive to make C,, large by having a large
sail, and attempt to make C, small by having a
smooth hull. For a good sailboat C,, = 30C.. )

¢. Solve the equation of part a for C, = 30C; and
from it find the (approximate) values for the maxi-
mum boat velocity and for the best sail angle.

311. At the equator a projectile is shot vertically straight up. It reachesa
height & and falls down again. Find the distance y, between the point where
it lands and the point where it was shot up, as a function of the height A.
Calculate this distance numerically for A = 90 miles.

312, Calculate the east or west deviation of a shell fired (a) to the north
and (b) to the south from a point at 45° northern latitude with a gun elevation
of 45 deg and a muazzle velocity of 2,000 ft/sec. Neglect air resistance.

313. A stretch of the Mississippi river at latitude 40° during flood condition
is flowing to the south with a speed of 10 mph, and it is then 1.5 miles wide.
Coriolis claims that the water surface is not level. Calculate the difference in
level between the two banks of the river and state which one is higher.

w

314. A particle of mass m has the shape of a bead il
fitting without friction around a thin but stiff wire, bent
in the shape of a circle of radius r. This circle is forcibly
rotated with constant angular speed w about a vertical
diameter.

a. Write the equation of motion of the bead relative to
the wire, expressing its position in terms of an angle ¢.

b. State what the Coriolis force is and how it influ- th
ences the motion.

Y

& Sav/
ProeLEM 310,

»

ProBLEM 314.

816. A turntable carries on it a contrivance consisting of two chemical test
tubes each about 6 in. long and mounted at angles a with respect to the ver-
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tical. Both tubes are filled with water, closed off with tight corks at the top.
One of the tubes has & steel ball in it and the other one has an air bubble.
The assembly is rotated at angular speed w about the vertical center line.

a. Investigate whether, for a given w, the steel ball or air bubble may be
in a position of equilibrium, r.

b. Find whether this equilibrium is stable or unstable.

¢. Describe what will happen if the turntable starts from rest, is given an
increasing w up to & maximum, and then is allowed to slow down again
gradually.

ProprLEM 315. ProsrEM 316.

316. A horizontal turntable is rotated at uniform speed w about its vertical
axis 0. It has attached to it a thin shaft or stretched wire at perpendicular
distance @ from the center. On this wire, a bead of mass m can slide without
friction. The bead is attached to the table with a spring of stiffness %, so
adjusted that when the spring is without force the bead is in the mid-point, at
distance a from O.

a. Set up the equation of relative motion of the bead and find its natural
frequency of vibration.

b. How does Coriolis enter the picture?

ProsLEM 317,

317. Helicopter rotor blades are attached to the central pylon through ball
hinges H, which allow the blades (within limits) to flap freely up and down
as well as in the plane of rotation. For this problem we consider only the
up-and-down motion, and consider the blades to rotate at uniform angular
speed w in the horizontal plane, deviating from that plane only by small
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angles ¢. Let the dimensions a and b be as shown in the sketch. Let w and
I¢ be the weight and moment of inertia of one blade, and let W be the weight
of the aircraft per rotor blade. This weight W is sustained by one blade
through an aerodynamic lift force W acting vertically upward on the blade,
and we assume for simplicity that this lift force also acts through G.

a. Calculate the steady-state value of the angle ¢ for which dynamic
equilibrium exists, with constant w and the aircraft hovering in the air.

b. Write the equation of up-and-down flapping motion of a blade about
the above equilibrium position, and from it deduce the natural frequency of
flapping motion of a blade for small flapping angles.

318. In internal-combustion engines, particularly in aircraft engines, loose
masses have been installed in the counterweights of the crankshaft for the
purpose of reducing torsional vibration. These masses are aptly called
““centrifugal pendulums,” and the sketch illustrates the principle. O is the
center of rotation of the engine, represented by a disk of constant angular
speed w. At an eccentric point C the thread of a simple pendulum is attached.
Call OC = a and Cm = I. The pendulum can swing in the centrifugal field,
which in practice is so large that poor g is completely drowned and can be
neglected.

a. Set up the equation of the motion of the pendulum relative to the disk
and do this for small angles only (for large ¢ it gets too complicated).

b. Compare this result to that for a simple pendulum in a gravity field g.

¢. Look at the Coriolis force in this problem and state how it affects the
motion.

ProBLEM 318, ProBLEM 319.

319. Replace the simple pendulum of the previous problem by a compound
one of mass m and moment of inertia I ¢, and use the notation OC = a, CG = b.
Find the frequency of this compound pendulum in the centrifugal field.

320. Replace the pendulums of the two previous problems by a bifilar one
(page 247) of mass m with the dimensions C,D; = C2D; = l. Introduce
such other letters as you may need, and find the point for which the centrifugal
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acceleration gives the frequency of the pendul‘um correctly, when written
instead of ¢ in the formula for the simple gravity pendulum.

C}T TC}
Dy D,

ProsreM 320. ProsLEMS 321, 322, and 323.

321. An engine governor is mounted in & flywheel, rotating about O at
angular speed w. It consists of an eccentric mass m, pivoted on the flywheel
about a center P. The distance OP = e is called the “eccentricity”’; PG = a
is the distance of the center of gravity to the pivot. The centrifugal force
tends to turn the weight about P in a counterclockwise direction relative to the
flywheel. This is held in equilibrium by a stretched spring attached at S,
of which the natural length is AB, so that BS = [ is the elastic elongation.
If the stiffness of this spring is k, if the normal speed of the engine is wo, if
PG is perpendicular to OP as shown, and if PG, and S are collinear as shown,
prove that klb = mwgae.

322, If in the previous problem the engine speed = wo + Aw becomes
greater than the normal speed wo by & small amount Aw, the centrifugal force
becomes greater, and consequently the angle OP@ becomes greater than 90 deg
by & small amount Ag, stretching the spring somewhat. Sketch the new
(dynamic) equilibrium position, and prove that

Aw 2 b aet—a?

2= (1o ra)
The small relative angle Ay is used to close the steam- or fuel-supply valve of
the engine, for the purpose of slowing it down again to its desired speed wo.

328. Consider once more the governor of Problems 321 and 322. In those
problems the relative position of the eccentric mass was studied for various
constant speeds w of the engine, and it was seen that for larger speeds w the
line PG is turned about the pivot P in a counterclockwise sense through a
small angle, stretching the spring. This shuts off the steam or fuel supply,
slowing down the motion.

Now imagine the speed to be wo + @f, which means that the disk at the
instant ¢ = 0 has the normal speed wo but has an angular acceleration &. This
will cause a relative counterclockwise acceleration of PG about point P, and
thus will initiate a closing of the fuel valve even before the speed has increased,
by the acceleration @ alone.
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a. Prove that this relative angular acceleration is
olp = aom(k2 + a?)

b. Describe the Coriolis forces. How do they influence the problem?

324. A uniform circular disk of
radius B and weight W is rigidly
keyed to a weightless shaft at an
angle . The shaft is supported in
two bearings, distance 2a apart,
and the assembly has an angular
speed w. The angular momentum
vector 9 will then include an angle
8 with the axis of rotation w.

a. Derive a formula for tan 8 in terms of the angle a.

b. Calculate the rotating bearing reaction forces for the case that W = 10
b, R = 8in, a = 10 in,, a = 30° and N = 600 rpm.

326. The disk of Problem 324 can be considered as the main element of a
‘““wobble-plate” engine. Imagine eight pistons and cylinders arranged 90 deg
apart around the shaft. Only one pair of these is shown in the sketch; two
pairs lie in the plane of the drawing; one pair is situated in front of the paper,
and another pair behind it, and of course the cylinders and pistons are station-
ary (do not rotate).

a. Prove that, when the shaft rotates at uniform speed w, each piston
executes a harmonic motion.

b. In the position shown, the two pairs of pistons in the plane of the paper
have no velocity, while the two pairs above and below the paper have maxi-
mum velocity. If each piston weighs w, lb, and is at distance r, from the
axis center line, calculate the magnitude and direction of the angular-momen-
tum vector M, of these four pistons.

¢. The angular-momentum vector of the entire wobble-plate engine is
the vector sum of Mg and 9M,. Find the relation for which this N lies
along the axis center line, so that the engine is completely balanced.

ProBLEM 324.

P_ = ¥

Py

2 2
|

——— e SR — Sy,
\\(’I

ProBLEM 325.

326. A man standing on a turntable has a spinning bicycle wheel in hig
hands. The man, turntable, and dead bicycle wheel have a total weight of
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200 Ib and a radius of gyration about a vertical axis of 8in. The bicycle-wheel
rim weighs 5 Ib and is at 13 in. radius. At the start the man is not rotating;
the wheel is held horizontally spinning at 200 rpm. The man then turns the
wheel upside down at uniform speed in 2 sec, i.e., the wheel axis turns through
180 deg in a vertical plane during those 2 sec. Calculate and plot the man’s
angular velocity during that interval.

327. A quickly maneuvering single-seat single-engined airplane turns
through an angle of 90 deg in 10 sec. The propeller weighs 500 b, has a
radius of gyration of 3 ft, and rotates at 1,200 rpm. Calculate the gyroscopic
moment imposed on the propeller-shaft bearings.

328. A bicycle is going at a speed of 10 mph. The front-wheel rim and
tire weigh 5 Ib, and their average radius is 13 in. If the bicyele is falling over
sideways with an angular speed of 3{ radian/sec (which is barely noticeable),
calculate the gyroscopic torque of the front wheel.

329. The rotor of an aircraft artificial horizon (}ig. 288, page 331) consists
of a solid steel disk, 3 in. in diameter and 34 in. thick, spinning at 3,000 rpm.
The instrument is off the vertical, so that one of the small pendulums in the
bottom blocks off an air passage and the opposing pendulum opens its passage
wide. This passage has a moment arm of 4 in. with respect to the center of
the instrument, and from it issues a jet of air, 3¢ in. in diameter at a speed of
100 ft/sec, of atmospheric pressure (Yoo the density of water). Calculate
the angular speed with which the instrument returns to its true position.

330. An ocean liner of 40,000 (short) tons weight has a radius of gyration
of 20 ft about its longitudinal axis of rolling motion. It carries three Sperry
anti-roll gyros (Fig. 287, page 329), each with a rotor of 2 tons weight and
5 ft radius of gyration. The gyro axes can be made to precess fore and aft
through an angle from —30 deg to +30 deg with respect to the vertical.
Without the gyros the ship can roll, performing a harmonic motion (page 159)
with a period of 7 = 20 sec for a full swing.

Calculate the rpm of the three rotors necessary to impart to the ship suffi-
cient angular rolling speed to ensure a roll angle of 1 deg (of the ship) for one
precession from ~—30 deg to +30 deg of all three gyros.

331. A turn indicator for aireraft consists of a gyro wheel @ mounted with a
horizontal axis bb in a rectangular frame. This frame is supported in rigid
bearings ¢, so that it can turn about another horizontal axis cc perpendicular
to the gyro axis bb. The apparatus is mounted in an airplane with axis cc
fore and aft. The rectangular frame is connected to the “ground” through
two springs d. When the airplane turns in a horizontal plane, the gyro axis bb
is forced to turn likewise, and this is possible only if an appropriate moment
is exerted on the gyro. This moment is furnished by the fact that the frame
turns through a small angle ¢, say 10 deg, about axis cc, and in this deviated
position one of the two springs d is in tension, and the other one is in compres-
gion. Thus the angle ¢, which can be observed, is a measure for the rate of

“turn of the airplane,
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Let the gyro disk weigh 1 lb, have a radius of gyration of 2 in., and rotate
at 1,000 rpm. Let the horizontal distance between the two springs, 2a, be
2 in. Calculate the stiffness & of the springs required if ¢ = 3£ radian is to
represent a rate of turn of the airplane of one full turn per minute.

ProBrEM 331,

332. Refer to the primitive form of a ship’s gyrocompass shown in Fig.
294 (page 335) and to its operational diagram (Fig. 295). Let the gyro rotor
weigh 20 1b; let its radius of gyration be 3 in., and let it rotate at 4,000 rpm.
Consider the pendulum to be a simple one (page 184) of 6 in. length. Calcu-
late the necessary weight of the pendulum bob in order to cause in point C
of Fig. 295 a westward precessional speed of 1 deg/min for a compass-needle
elevation of 1 deg.

333. The problem of the hummingbird in its cage on the scale of a balance:
A balance has on one of its scales an empty bird cage, and on the other side,
sufficient weight to ensure neutral balance. A 1-0z live hummingbird is
put in the cage. Everybody agrees that when the bird sits down in the cage,
an additional 1-0z dead weight must be placed on the other scale for balance.
What weight is necessary when the bird hovers in the air inside the cage?
Discuss this for the following cases:

a. A closed cage.

b. A completely open cage, bottom and all.

¢. A cage with some side openings and a solid bottom, like the usual ones.

334. A perpetual-motion machine: An endless belt passes over two pulleys
ag shown, It carries a large number of identical and equidistant small cyl-
inders, containing some air and a piston w. Only two of these pistons are
shown. The entire apparatus is immersed in water and is assumed to be
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without friction and without air leakage. Obviously the pistons on the right
side are farther down in their cylinders than those on the left side, so that the

PROBLEM 334.

buoyancy on the right is greater than on the left, and the belt will rotate
in a counterclockwise direction. Analyze the system in detail.
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Ws 200/ .
1. — = ———2——.; plot Ws/W, versus h/l with an as tote at
W Nt G p /W / ymp
Wi/W, = 2.

2. 90deg. 3. W, =1731b, W; = 201Ib.

4. /P AR = 22 deg, /P:AR = 49 deg. b. (a) 14.4 1b, (b) 1.15 lb.

8. 200 /2 b directed at 45 deg pointing to the right and downward;
intersects the bottom edge of the square at 4 in. to the left of the bottom
left-hand corner.

7. 381 tons = /757 + 373% at 46.7 ft behind bow.

8. Forward force only of 606 1b, located at 3.17 ft inboard from starboard
(right) side.

9. T, =1001b, T, = 141 1b, T5 = 158 Ib, Ty = 115 Ib.

10. (a) 13.05, (b) 19.9. 11. (a) 2,588 ft-lb, (b) 7.07W ft-lb, (¢) 365 lb.

12. (a) 200 lb-in. clockwise, (b)) 600 lb-in. counterclockwise.

18. 2,030 ft-lb. 14. 500 lb.

15. 112 Ib directed forward slightly to right with angle of about 30 deg
with respect to the forward direction. The force intersects the center line of
the boat at a point 11.6 in. forward of the stern.

16. 1,200 Ib downward, through center of disk. 17. 2,400 lb.

18. 138 1b, (b) 120-lb tension.

19. (a) z = aW /W2, () Wima = 12 b, linear scale.

20. (@) W=—2—p™ _ 521 5y w = 125 — (4w b,
Ay Y R A = 510

21, P=361b,F, = 841b. 22. R = 1214 Ib, G = 6234 Ib.

23. P=17.141b. 24. Tia = T:h.

26. Rope pull 485 lb; hinge force 820 b, of which 780 Ib vertical and 242
b horizontal.

26. Front 875 Ib, rear, 1,625 b,

27. (a) F = Wtan a, (b) vertical balls F, horizontal balls W, inclined
balls \/F2 + W2 (c) 5°43'.

28. (a) Wy = Wysine, (b) 251b. 29. L, = 14,000 Ib, L, = 6,610 Ib.

30 1501b. 31. Q = 2P tan . 382. z = 4.21 ft.

33. (a) 200 1b, (b) 200 Ib.

34. Gripping pressure 5,920 lb, tension in crosshar 11,840 Ib.

36, Ti=To=Ty = W/2. 86 A = —B=P§;C=P.
37. P/W = % cota. 38. 500 Ib.

39. (a) 37.51b, (b) 37.51b horizontally. 40. T4p = P(4l/h).

41, (a) tan a = -——E p (b) make a/b very small.

w
441
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l
ViE= (0 + e
Y a—d (b + d)(c +e)
Upper wheel: — = — +
PP W % " 2%~/ —(Fadr
_I_J=a—d_ b+ d)(c — e)
W 2 21— (b+d)
b+d a—d
() e = 2
VE-(b+d? ¢
Interpret this by observing where the rope force intersects the weight force.
43. 1541b. 44, (a) 85 cu ft, (b)) This answer is independent of the angle.
45. Ty = Tirs/ry; tooth force = Ti/ry = T/rs; each bearing force equals

2. @) T=W

Lower wheel:

the tooth force; Mimme = Tt 1'.'1—:—_12 =T1 4 T
1
6. P=C5W. a1 l=2nt

bd 2w

48, H, = Hp = 6341b, V1 = 616 1b, Vi = 384 lb.

49. Left support down, 386 Ib, left support to right, 250 Ib; right support
up, 34 Ib, right support to left, 603 Ib, hinge force, 1/250? + 386 = 460 Ib.

50. X = 8001b. Left support force is 100 1b horizontal and 750 1b vertical.
Right support force is 500 1b horizontal and 750 Ib vertical. Left hinge force
is 900 1b horizontal and 250 1b vertical. Right hinge force is 250 lb vertical,
while the horizontal component is 500 Ib if the 400-Ib load is applied to the
horizontal bar, and 900 b if that load is applied to the 45-deg bar.

B1. X = —250 1b (pulling to the left), Rz = 500 V21 (compression in
45-deg bar), Rz = 500 Ib up from ground on bar 4250 1b to right from ground
on bar.

52. Rz = 450 Ib horizontally to right +50 Ib vertically down, B4 = 50 1b
horizontally to left + 150 1b vertically up. Both directions are from the bars
onto the foundation.

53. The horizontal components are 11%£ Ib to right on top hinge and
1134 b to left on bottom hinge. The sum of the two vertical components is
30 b, divided between the two hinges in a statically indeterminate manner.

56. z/a = 16, y/a = 4.

67. 0.95 in. to the right and 2.95 in. below the top left corner.

68. 3¢r above base.

69. zg = yo = 0.41a, with the origin in the upper left outside corner.

60 2 h? — 2r?

“ 32k v
h? — 3r*

61. yygr

62. (¢) Drawing the straight line at 0.20 in. from the apex of the arcs,
the center of gravity is 1.28 in. from the center of the pin; (b) for lower arc:
0.35 per cent or 0.0045 in., for upper arc: 0.31 per cent or 0.0040 in.

bt — 4hh} + 3R

83. (0) $ah, () 70 = g
base, where k is the height of the complete cone and h, is the height of the
truncated top piece.

above center of semicircle.

above center of hemisphere.

» independent of the shape of the
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84. wi/w; = ¥reota. 66. Wi /W, = 2 cot a.

68. Hinge force 14,700 lb, lip force 18,400 Ib, both directed vertically to
the door. _

69. 8,000 Ib. 70. b = /35 = 0.37h. TL. b = h/N/3 = 0.58h.

72. (a) F =~d (h - g d) per running ft, (b) 3,400 Ib/ft.

73. 3.52 ft.
74. In top position, 139 Ib/in.?, in bottom position: 127 1b/in.2
76. Less deep by 7 in. 76. 46 per cent.

;
. 5=a[b ;‘].

78. A round number. 12 2

79. (a) Ask the inventor. (b) Upward push equals the buoyancy of the
cylinder in a liquid of 7 = X4 (Ywater + Ymeroury); sidewise push to left is
dhl(Ymeroury — Ywater), Where h is the depth of liquid at the center of the
cylinder.

80. (a) 216 lb; (b) 134 in.; of the 10 ft length, 8.9 ft is wet and 1.1 ft
is dry. }

81. Bar 1: —P21/2; bar 2 and 3: +2P; bar 4: +P.

82. Compression 2P in all three top members; tension P v/5 in the two
inclined bottom bars; tension 2P in the central bottom bar; compression P
in vertical struts.

83. Top member, 9,000-Ib compression; bottom member, 9,300-1b tension;
diagonal, 1,760-1b compression.

84. See Fig. 63 or 64, page 58.

86. 12: —P/2;23: zer0; 34: —5P/2;45: —P \/5/4; 56: —P;67: —2P /2.

87. Maximum force in top bar next to right support: 3.67P compression.

88. Bottom horizontal, 2P /3 tension ; diagonal, P V/3/4 compression;
upper girder, 15P/4 compression.

89. 4 sq in.; worst bar is the upper horizontal above the right support.

90. (a) Six inside bars are stressless; bottom stringer, 3P compression;
upper stringer, P 110 tension; upright at left, P compression. (¢) Maximum
compression in horizontal bottom bar next to left support is 13.5Q; maximum
tension in upper bar next to left support is 12.6Q.

91. Bar 1: —3P/4; bar 2: +15P/4. It is necessary to weight down the
shore support C. By how much?

92. nth upper bar, ~nP; nth lower bar, +(n — 36)P; nth right diagonal,
—P/\/E; nth left diagonal, +P/ V2.

93. Maximum deflection is 1.84 ft, under the 200-1b load.

94. 5,200 lb, 50 deg. 96. Sagis l/2 \/ 3, tensile force is P.

96. The lowest point is E, about 1.2 below A.

97. H = 1,370 1b, lowest point 165.7 ft from left tower. 98. 614 ft.

99. (a) Two different, but symmetrically located parabolas, whose tan-
gents at the center include an angle 2«, determined by 2H tan o = Weenter,
80 that a = .025 radians = 1.43 deg; (b) 2.05 ft.

100. 77.5 ft.

101. Maximum shear force is 10 tons at right support, maximum bending
moment is 90 ft tons in the stretch between locomotive and tender.
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102. Maximum bending moment under left wheel is 39.0 ft-tons.

103. Maximum shear is P, maximum bending moment is Pa/2 at the
middle support.

104. Maximum bending moment is 155§ ft from right support and is
(1556)* = 244 ft-tons.

106. Counting z from the right support to the left, the bending moment
under the triangular load is 3{swlz — 3gw(z*/1).

106. The force in the nth upper stringer bar is — Q nl + Q The
force in the nth lower stringer bar is + —= NQ NG _*;l%)l Qn (n 2hl)l The

vertical component of the force in the nth right slanting diagonal bar is

NQ — Q.

2

107. Cable tension: 3P/A/2; bar AE: —P /2, no bending; bar AC:
maximum bending moment Pa at B, and the section AB is in tension 5P/2;
bar BD has a bending moment Pa in the middie and is in compression 2P V2.

108. Zero bending in the good design. In Rube’s horizontal bar the
maximum bending occurs at the strut connection; it is (Wi/3)(1 + 1/ \/5).
In Rube's strut the maximum bending moment is in the center: Wi/6.

109. In table top Mma = wi?/8 at the leg hinges. The maximum bending
moment in the legs is wl?/2 in the center. The upper halves of the legs have
3wl/+/2 compression; the lower halves only wl/ V2.

110. f = tan (a/2).

111. (a) f = tan «, (b) total force 100/ V3 1b consisting of 50 Ib normal
and 50/ \/§ Ib frictional component.

w 2fr 2r
112, W R 113, foutey = z Rf“"'
114. (a) Tips at 100 Ib; (b) 50 per cent; (c) slides at 120 lb, 100 per cent.
116. (¢) Downward, (b) f = 3§. 116. Torque = 34rfW.
1:/ W

117. Torque = 2§ = . a

118. (@) z =1+ fh — V2flh + f2h2, H = fwz; (b) V=w(l-z);
€)l—2z=161t,V =321b, H = 84 1b, Fitua = 91 1b

e tan-1[€ - 7). 1+f’-,=_.
119, f = tan 3 8) 121, 7 sin? @ 21
cos? ¢ + a/b

122, (a) f = P pT—— @® f=2;---1 (c) add horizontal cross

member close to ground.
123. 300¢ 8 < P < 300¢ 8, F = /W% + P2,
124, 141 lb, the lower one pulling aft and the upper one forward.
126. (@) F up on black, F down on white; (b) F down on black, F up on

white; (¢) F down on extreme ends of both handles, F up on disk ends of
both handies.

126. Force F /3 along diagonal of cube; moment Fa V3 in opposite
direction, forming a left-handed screw.



ANSWERS TO PROBLEMS 445

127. Location of point of action is at 4a/5 from origin, and at a/5 from
force 2P. The force of the screw is F \/3 and its moment is 2Fa/ \/5

128. Same answer as 127, except that we write F; instead of F and a/2
instead of a.

129. f 2 tan a.

180. AC and BC have tension P; OC has compression P V2.

131. At A, downward 4,000 Ib and to right 3,366 1b; at B, downward 10,500
Ib and to right 3,950 lb.

132, AE = 4224 b, CG = 4378 b, Dye. = 1,000 1b, D, = 444 1b,
D, = 134 lb, maximum bending moment at C = \/3,490% + 700% = 3,550
ft-lb.

133. In direction of Ci, z = 0.341 in.; in direction of Cs, ¥y = 0.059 in.;
in the plane of Cs, 2z = 0.

134. 3) 2 gin o - \/ 1y _ 4 gin*Z; (c) for 90 deg P = S A—
P r 2’ W/(l/r)’ —9

for 180 deg P = 0; (d) the center of gravity is the center of rotation

~F_rn
T —a

138. (a) z = \/—FL%_—;V—Z; (b) same as (a); (c) same as 134(b), where

M = Pr/2; (d) superposition of (a¢) and (¢) with M = Pr.
_ P (1, 3cx , 3dy\, < g_l

186. @ b= m\atiatin)®t5=3

187. BE and DE = +P /2, AE and CE = —P /2, AB, BC, CD, and
DA = —P/\/2, AC = 42P.

1388. AB,BC,AF,CF,AE,EF = zero force, ADand CD = —P,BE = +P,
AC = +P /2, AE = —P/2, DE = +P /3.

139. Horizontal forces are —29.5 1b at 4; +43.1 Ib at Cy, zero at C,,
—29.2 Ib at C;, and 415.6 Ib at B. The maximum horizontal bending
moment of 44 in.-lb occurs at C,.

140. (a) Horizontal bending moment: from 6Pa/5 at left to 4Pa/5 at
right. Vertical bending moment: from 4Pa/5 at left to 6Pa/5 at right.
Twist: Pa constant along section. (b)) Maximum horizontal bending moment
at left end of center section; maximum vertical bending moment at right end
of center section; maximum twist moment all along center section.

141. Maximum bending moment in the apex of the semicircle, of value
P/ ¥ (3a/ 2)%. Maximum twisting moment all along the horizontal sec-
tions, of value Ph.

142, (a) 100 ft-Ib, (b)) —100 ft-lb, (c) zero. 143. —400 x in.-lb.

144. (a) 9,000 ft-Ib, (b) zero, (¢) 9,000 ft-Ib.

146. (a) a/c = b/d; (b) ew = aW, where W is understood to include the
weight of the platform.

Wr 1

W P = lana

147. (a) X = 434P\/3; (b)) Ry = 2P /3, R, = 2R,, R, = nR,, all R’s
being horizontal.
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148. String force is 3W,, independent of the length of the string.
2
149. My = Mc = %n—DMA,Mhm‘ = MA.‘II -+ 1".-”).
Na N4

P TlR
160, — = -
Q ra
R + r . .
161. (a) P$ = Warum® + 2Wiuerete, where & is the upward dis-

placement of C, A standing still, and e is the corresponding upward displace-
ment of G; (b) P = 10 4 40¢/8; (c) P = 101b; (d) « = tan-! 35 = 26.5 deg,
C being lower than B.

r et+fa + b

162. (a) a/b = ¢/d, (b) "

under A.

163. (a) Frame torque +3M 4, propeller torque —4M,; (b) frame torque
(1 + 2dz/ds) M 4, propeller torque —2(1 + ds/da) M a.

164. Stable for h/2 < r.

156. Weights must be lower than 5 in. below knife edge.

156. Stable if & > 72/(r1 + r2), where k is the distance between the center
of the upper half cylinder and its center of gravity, or b = 4r./3x.

1567. (a) Same as 156 with b = 3r,/8, (b) same formula with % for the
upper object.

168. (b)(l) Call it zero; (2) the center of gra,wty rises 0.16 ft, A rises 1 ft,
while B rises 0.11 ft; (3) the center of gravity rises 0.015 ft, A falls 1 ft
while B rises 0.68 ft.

159. Always stable.

160. Indifferent equilibrium in all angular positions.

161. (a) £ = —rw? sin wt, (b) 308 ft/sec?.

162. 11.3 drops/sec, (As). = Y%g(Af)2(2n — 1); tap is /24 above boards,
distances are 31/24, 5l/24, 71/24, and 91/24.

163. 105 sec. 164. 34 mile.

166. z = —aw(sin wt + 3§ sin 2wt), £ = —aw?(cos wt+ Y cos 2wt),
Zmax = 1.03aw.

166. (a) 1134 in., (b) 3581¢ in. 167. 1,042 revolutions.

168. (a) 4,000 miles/hour, (b)) 6 minutes.

169. (a) 29.8 ft/sec? of which the centripetal component is 25 ft/sec?
and the tangential component is 16.1 ft/sec.? (b) Half the answer (a).

170. 11 ft/sec. 171. 2 ft/sec?, upwards.

172, (a) wi/ro, (b) 120 revolutions. 173. np/2n,.

174. /i = —y/z = —y?/(L® — I?); y = —7.68 in./sec.

5 P v .
176. 2 = rep = 0, 7 ———_ro[(h/%rro)z 1
176. (a) v, = v, 9y = wo(ro + vot), vs = wor €08 ¢ + v 8in ¢,
vy = —wor 8in @ + Uo COS @,  Utotal = ‘\/m,
) & = —wor sin ¢ 4+ 2wowo COS ¢,
i = —uwyr o8 ¢ — 2wy Sin ¢,
acceleration = \/#* + 72 = weo V3F (v/v0)%;  (c) tvta = 65.2 in./sec,
Dtotat = 410 in./sec.?

1T = wp 4 —20@/Dsine . .a (1—a/l)cose

V1 = (a cos ¢/1)? °I (1 — a? cos? /1%

= T/H, (c¢) in lever DF right
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2
—ygt
178. (a) Circle of radius /2 about O as center; (b) yc = —l;v—°;t—2,
-0

. —uvil2
i = Yie, £ = Yvo; (0) fc = (——_W iz = Yijc, 8 = 0.

179. (a) z = r cos wi + l,\/l T (1 — sin wi)?;
x = r co8 wt + sm wl + j cos 2wt -+ const., wherew = V/R. With respect
to rail Zon = @ + Vt.

o £ = —or| sinwt — T cos wt + 2% sin 2wt),

l
. r ., r
&= —o¥r (coswt + i sin wt + i cos 2wt);

l;/c) Fmax = 2,340 ft/sec?
_ 2cos @ — 1'
180. ? b—4cosg

181. () sin (p +¥) = V2sin ¢, (b) f = cozo'ps(t Jcro‘:)(so Y

L S
()] g =sin
T aw . .
182. (a) v5 = - — (b) 171 in./sec. 183. 22 miles/hour.
4cos ¢

184. Horizontal line. 186. v = 7.01 ft/sec, { = 0.855 sec.
186. (a) t =4 01 sec, (b) 45.3 ft. 187. 66 ft.

1
188. (o) t = gsma 1 +7§)’ v = 90/V/2, (b) & = 2.12sec, v = 14.1
ft./sec.

189. (a) k¥ = 20 Ib/in., (b) f = 6.25 cycles/sec, (c) f = V/g/6/2x.
190. P = 17 -b— the forward wheel lifts off. 191. 6.35 sec.

2 k'’
192. (a) Ib ft-! sec, (b) b, = 2 Yoodr ~ Voater,
Ybody
(d) 10.5 sec.
198. 1.18 ft. 194. ¢ = 0.67 sec, T = 0.732 Ib.
196. String tension = 0.866 -+ 0.85N2110—4 Ib;
pressure on cone = 0.500 — 1.47N%10-4 1b,
in which N = rpm.
196. g/cos a = w?r, 91 rpm.
197, v = 24.1 ft/sec, thottom = 33.1 ft/sec, Fip = 0.40W,
Foottom = 2.14W,
198. o = 41.8 deg.499. 17.5 deg or 72.5 deg.
200. {a) tan a = v2/Ryg, (b) 960 ft.
r
201, (a) ol oy ) P = mw?rs; — k(rs — r1), (c) 815 rpm.
202. (a) Torque = (w/2¢) w??sin 2wt, (b) 148 ft-lb, at 45 and 135 deg

(C) v = vco(l - e_f“)r
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2
203. Vwi = \/;l, water pressure force = m; (97 - g), string tension

2
force = (my + ms) (07 - g).
. . _flmx +fzmz . __myme _
204, (a) & = g[sxna . osef; T= ml+ngcosa(fz 1),

(%) T = 0.115Ib.
906, T — ™g(Ein & + /1 c0s @) + mug(sin a + f cos &) + (ma + m)s,

cos B — fa8inf
. sin « cos «
208. & = g o T, o to left
&s = myfy/ms to right
i = &1 4+ my/m,) tan a.
. T sin « cos «
207 % = "+Et&““>1—+mm'
- T my .
Tz = — ;n—z + g I

T = (ml + mz)ﬂ tan a.
208. T = % (Ws + W.). 209. 64 deg. 210. ¢ = 0.725 sec.
211. (a) 0.634! and 0.366l, so that the two ends of the chain have the

same height, (8) 5 = a cosh( (—H'—zl‘/—g)i’ : ¢>, (©) ¢ = 0.815 sec.

212. (a) The instantaneous axis of rotation is horizontal, passing through
the two points of contact of the lower race. (b) The upper contact point
closest to the vertical center line should be lower, so that the ratio of the
distances to the instantaneous axis of rotation of the ball and of the upper race
is the same for both upper contact points. (¢) Any location of the bottom con-
tact point is permissible. The instantaneous axis is the line connecting the
bottom contact point with the point of intersection of the vertical center line
with the line connecting the two upper contact points.

213. (a) The velocity pole is the mirrored image of O with respect to AC,
() circle of radius ! about O as center, (c) circle with AC as diameter.

215. (a) Ve = 1.87Vp, Vo = 2.24V 5, (b) midway between O and Q.

218. Vo = 2.1V,. 217. Nearly zero. 218, V, = 2Ve.

219. (a) Vertical straight line, (c) the point of tangency d, e.

220. CE = 2DE.

222. Vp = 0.707 ft/sec, wpp = 0.25 radians/sec; (b) Ve = 1 ft/sec?;
(c) tangential = 3 \/5/4 ft/sec?, normal = \/5/8 ft/sec.?

224. (a) The pole is the origin O; accelerations are 4viro/12, directed toward
0. (b) The pole 0’ is the mirrored image of O with respect to AC; the accelera~
tions are 2vry/l, directed tangentially, i.e., perpendicular to the radii ry,
(c) A circle passing through O, 4, 0’ and C with B as center, and the location
of the pole on the circle is determined by ro/re = iol/208.

226. In line with BC, 2 ft to the right of C.
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227. Acceleration of Q is zero; acceleration of S is 0.84 v3.

228. The velocity pole is at the contact point between the planet gear and
the outer gear. The acceleration pole is between the centers of the planet
and sun gears at distance r}/(r1 - r2) from the center of the planet gear.

2
229. (a) %i ln—h on each bearing, (b) 63.9 Ib.

280. Fumux = 1,140 1b.
231. (a) 4,000 Ib radially outward +75 b downward, (b) parabola with
apex in center at 3,200 ft-lb..
2
232. (a) Stress = %w—f: where m = total mass; (b) 2,560 lIb/in.?
.

2,
233. (a) % - “’7’ (b) 118 rpm.

234, (a) Inertia forces are radially directed from O; intensity at B is
2Vidm/l; the end points of the vectors are on a line parallel to the rod.
(b) Bending moment diagram is parabolic with a peak at B of mV3/4.
(c) Forces at A and C are Vim V2/1.

286. I 4 = 1.67 Ib-ft-sec?, Ips = 11.6 lb-ft-sec.?

236. 1.4 = 22.1 Ib-ft-sec?, Ipp = 147 lb-ft-sec.?

_ 3¢ D} - D

81 1= 8,192 D; — D, ol.

238. (a) I. = 0.0302, I, = 0.0075, I., = 0.0109, all expressed in lb-in.-
sec?, (b) o = 22 deg, Jme = 0.0346 lb-in.-sec.?

3 Wa? 3 Wa? 7 Wa?
239. (a) I, = §—g-y I,, = -2-—g~; I,v = -1—67, (b) Tg = 5a/6,
11 Wa? 11 Wa? 1 Wa?

Ye¢ = 50/12,1,6 =§§T I,,q=-2271 zy@ = —ﬁT} (c) a = 77deg.

240, WR? = 32,800 1b-ft2.
I = 1,020 1b-ft. sec?,
x r

241. % prih. 242, 3 prih.

243. (d) I, = 0.315 lb-in.-sec?, I, = 0.865 lb-in.-sec?, z¢ = 2.83 in,
Ig = 0.19 lb-in.-sec?.

244, Vertical force is 138.5 Ib steady downward due to dead weight plus a
revolving force of 55.6 Ib. The horizontal forces are just +55.6 lb.

246, (a) £ =¢

w A
o ¥ 2W + Wok/n: ~ I Den’
w w
T = W(l+m);Tg= W+wil —-]—55-1)
(b) & = 0.018g = 6.9 in./sec?, Ty = 2.036 lb; T» = 2.063 b.
246. 16.5 minutes.

247. (a) ¢ = M.

ds\? d3
Is+ I, 7 + i+ I\
2 1,

(©) Iequv = 21.2 Ib-in.-sec?.

5 (0) @ = 0.24 radians/sec,
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2
248.%=I;+[4+ ?) (Ix+I2)+(r1r’) ..u_rf.*.(i!) I,.

g 720

=(1-~-2 =23 _ mlaly

249, (a) R. 51) ™0 Br =5 & mg, F Zlmg\/" (®) Ba =575
_ m2a29
R, =myg oI,

»2
261. Torque = I¢? and F = I;f—; occurring at the instants that the pin
1

either enters or leaves contact.
262. (a) Not possible, (b) z = 1/2, added at the bottom end.

1 Io+ w3 a
263. £ = z, cosh kt, where 7 W -g-

264. R, = Tk Zo cosh kt, Ry = (wr + 2a)u — -2T'k- x} cosh kt.
256. £ = 0.045¢ = 17.4 in./sec.?

266. £ = 4459, T1 = 1YW, Tz UsW, Ty = 3{sW.

267. (a) f = —21-;_ ,\/:: ®f= ,\/3:0

268. a < cos™1(d,/d,), or in words: The thread force T must intersect the
floor behind the point where the spool rests on the floor.
260. z = 1/3. 261. 7r/5 above the table.

2%4@%J@%A@moé=“7@%®HA=wG‘§%)

— _——-———w -
© o =935 4u/a

. r? . 1 r g
263. (a) ¢(Iq + mr?) +R—_;mgsm<p =0,0) f= wNE =+ i

© =5

264. I = 506 lb-ft-sec.2 266. £ =

343 l,
8

- 1
g 2"'

266. ic(—v%+g%)+z—z—a(9coso—ézsin0) =0,

xclz—acosO—i-(Ia-}-——g—- §+ Waasing =0.

267. v} = vt + 2gs(sin @ — f cos ). 268. 11.3 ft/sec.

269. (a)~434 in., (b) 59 in./sec. 270. (a) 52 b, (b) 62 Ib.

271, 11.5ft. 272. 400,000 hp. 273. 1,010 kw. 274. 116 ihp.

276. High-speed torques: 10,500 ft-lb, intermediate torques: 52,500 ft-1b,
propeller-shaft torque: 1,050,000 ft-lb.

(b) 42,0001b on the high-speed gears; 105,000 Ib on the low-speed ones.

276. (a) 1,520 ft, 206 sec; (b) drawbar pull = 242 tons, driver load = 968
tons.

¢ =3«
277. (a) bp = 2xN Plr 2xN Plr V3.

— e ——— — 2 = e ——
33,000 a L€ 7 ) @) hp = oes
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4Pr
278. (b) ¢* = . 279, 78 ft.
8. (b) ¢ Te +N(,?’b_§ Tmyrt
x 2 .
280. (a) z = 3600 _r}'F P (b) 91 revolutions. 281. 94 per cent.

282. (a) 69.5 hp, (b) empty cab 19.5 per cent, counterweight 26 per cent
and motor 54.5 per cent.

283. (a) 22.3 myv?, (b) 44.6 my.

2megr.(1 — cos @)
2 =

B (@) V= e T Mol = r/re) T LalTS
®f=o /T
T 2 \Nma + ms + me(l — ro/ra)t — 1a/7

286. (a) —g < sin a; (b) G is to the right of C and on the same level; the

equilibrium is unstable. () 1.09V/gr at 90 deg, 1.86 Vg at 180 deg,
2.124/gr at 270 deg, 2.84 \/gr at 360 deg.

ogs. %2 = 3(_ 3
gl 4\\/2

point has horizontal and vertical components each equal to v..

- 1); the top point goes down with speed v.; the bottom

e rr o W+ s

287. Position II: v} = 6lg V2 Tws + 9w;
o o kS
Position ITI: v} = 1.28lg 2w, + 3w;

41.2

288. vo = i+ 4(’0/(1)2
bucket about point B and @ = BC = 36 in.

289. The light carriage goes four times as far as the heavy one.

290. 47.51b at 45 deg. 291. 2,000 ft/sec; 6 X 108 ft/sec?

292. (a) 46.7 ft/sec, (b)) 1.76 per cent in wood, 6.25 per cent in bullet,
92 per cent dissipated.

293. (a) 180,000 1b or five times the weight of the airplane, (b) 2.06 ft/sec.

204, ¢ = o Wt Wa itk Wik?/r?

) W.— W,

205. (a) 11.72 radians/sec, (b) 1.87 revolutions. 296. 74 rpm.

297, The top deck recoils at 0.49 ft/sec; the center of gravity recoils at
0.15 ft/sec.

298. D = 1.90 ft, 565 ihp.

299, V2 = gor ;i——h; V = 25,800 ft/sec, or approximately 23 times the
speed of sound in atmospheric air.

300, V2 = 2gre.w for infinite distance, V? = 79¢2¢7esn for the moon.
In both cases substantia;lzr 37,000 ft/sec

in./sec, where & is the radius of gyration of one

301, Mpu/Mempty = €¥2 = 187. 302. (a) 8.05 ft, (b) 6.65 ft.

303. (a) The dead weight goes up with the man, remaining always at the
game height as the man. (b) The dead weight remains at its original location
if the man climbs gently, taking care to keep the moment of his own inertia
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force about the pulley center less than the friction torque. (¢) No difference
whatever. (d) Same answer as (a).

304. 37 of the original energy is dissipated; 54 is preserved, of which 254, is
translational and 194, is rotational.

806. 116 (short) tons.

my — Mz .
308. v;. =chosa;vl,, - Vsma,
2m,
vz,=ml+szcosa;vz,=0.

807. o = z/g for small « only.
549,89 =% - 7).
308. (a)<p+ltp ] 0 e g(l cost.\/l-)

809. (a) z/h = §/g, (b) & = %'&', (c) 10 ft/sec.

310. (b) Ci/Cu = B(ex — B), (c) B = a/2 = 10 deg; Voot mes = 2.73Vewina.
3

31 y = §—3-‘/§ Q % = 3 miles or 16,000 ft.

312. (a) East deviation of 375 ft. (b) West deviation of 750 ft; both
answers proportional to v}, so that for v, = 3,000 ft/sec the deviation () is
about half a mile.

318. 4 in. higher on west bank.

314.(0) 4 + g stn ¢ =w? sin ¢ cos $.(b) 2mréwcos ¢, directed perpendicular

to the plane of the circular wire. This force does not affect the motion; it
only causes a sidewise pressure against the wire frame.

316. (a) g/w?r = tan q, for steel as well as for air. (b) Unstable for both.
(¢} First stage (low speed): steel ball down, air bubble up; second stage
(medium speed): both up; third stage (high speed): steel up, air down; fourth
stage (medium speed): both down; last stage (slow speed): like first stage.

-_— 2
k = mo for k > mw?; when k < mw?, the bead sits

316. (a) f = 51;

with pressure against the end stop. (b) Does not affect the motion; causes
only a force against the wire.
W—uw gb
317. (a) ¢ =~ tan ¢ = v A BFETR

2
818, (a) ¢ + ‘.:’l_a¢ = 0. (b) The pendulum acts as a gravity pendulum

where the value of g is replaced by that of the centrifugal field at C: the point
of suspension (and not the point of the mass!). (c¢) The Coriolis force does
not affect the motion; it increases the string tension when the mass swings
forward with the disk , and diminishes it when the mass swings against w.

3819. A compound pendulum as if in a field ¢ = w?a.

320. A point at distance [ above G.

323. (b) Directed toward P radially; they do not influence the motion,
merely increase the pull on the pivot pin P.
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ANSWERS TO PROBLEMS 453

324, (o) tan B = 2—:_"“%——;,“, ®) 71 Ib.

826. (a) z, = rptan asin wt, (b) Mapis = dmywr) tan o vertically upward
in plane of drawing, (c) I pistons/Jaisx = co8% .

396. Increases from 0 to 28.2 rpm in 2 sec along a curve which is 180 deg
of cosine wave vertically displaced with horizontal tangents at the beginning
and at the end.

827. 2800 it-1b. 828. 7.4 in.-lb. 829. 0.009 radians/sec.

830. 5,550 rpm. 331, k = 0.28 Ib/in. 332. 0.54 b,

833. (a) 1 oz, (b) zero, (¢) between 0 and 1 oz.

834. Ask your friends tonight at dinner.
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LIST OF EQUATIONS

X =0, 32¥ =0, ZM =0

fedW
%o = Taw
ya=fydW g

faw

2 _JzdW

7

F <IN
X =0
Y =0
2Z =0

M. =2(Yz — Zy) =0
M, = 2(Zz — Xz) =0
IM,=2Xy —Yx) =0

v = Rw = R¢

e
®)n = 7= wR = ¢’R = vw

) =¢ =§ = Rp = Ra

F, =m#
F, = mj
F, =m3 i
Ft = m§
F, = m';—;

39

= g = 32.2 ft/sec? = 386 in. /sec?
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12.
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i=— —k-x
m
T = Tp COS (\/%t) +vo\/——?sin(£t)
1 —f= 1 |k 182-185;
T 7 22\m and 235
1 /g
= 5«‘\[1
1 (We
I =Ty
Moment = afr2dm = ol, 215. 216
Moment = [wlzy dm = wifzydm = oI, } 5
Iy = I, + a®m 221
Loy = Iyg + abm 20,
I = [r2dm = mk? 224
ml? ml?
Io = '1—2} Ignq = T 224
2 2
Looiar = 1)_1,§Ri_, I oot = Lng_ 226
Moment of external forces about O = I 233
laquiv = % 235
EF, = mig
SF, = mjs 241
EMG = Iaé
ab = ki 246
Fdz = d(M4mv?) = 4T 251
W = L'P(dssin a) = ﬁ)"de = ]:Wdy =Wh=V 256
x x 2 x 2
W=/de=/kxdx=k% =’-‘21=V 256
0 ¢ 0
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LIST OF EQUATIONS

work output _ work input — work dissipated

~ “work input work input

1 hp = 33,000 ft-1b/minute = 550 ft-1b/sec
1kw =134 hp

[ 1. _ o 2 1.
T—/27‘wd’m——2/rdm—élo¢o

T = %WJ% -+ %Iowz

F=- (mv)
M=Iop=I1% =2 (1) = X

F. = 3ma)

Fy, = —(m?])

Mo = = (I aw)

miVy + moVsy = mw, + mew,

7I’L2Vz - m;eVz -+ lel(l + 6)

Vg =

my + me
0y = m;Vl - m26V1 + 1n2V2(1 + 6)
! m; + me
. 1 — e? mime
AT = 5 m T (Vi~ Vg2

ﬁu.bs = 6:51 + ﬁvah
F = m¥ion = M(Vea + Vo)
F — m¥en = MVra

F = mb, = m(¥ra + Vean 4+ Voor)
F — MV — MVeor-= MVia

M——(ﬂ)?)
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INDEX

A

Acceleration, angular, 160
Coriolis, 303
definition of, 157
normal, 164
Acceleration pole, 207, 300, 410, 419
Acceleration vector, 163
Anti-roll gyroscope, 329, 438
Anvil, 292
Archimedes, 48
Artificial horizon, 320
Atwood’s machine, 191, 254, 374, 415
Autogiro, 425
Automobile brake, 96
Automobile fluid drive, 310
Automobile jack, 89, 98

Axioms, 4-6
B
Balance, Roberval, 147
rotor, 116

Ball bearing, 405
Bascule bridge, 353
Beam, bending moment in, 68, 77, 127,
372
cantilever, 74
curved, 129
on elastic foundation, 44
problems on, 370
shear force in, 70, 77, 372
on two supports, 26, 69, 76
Bending moment, 69, 77, 127, 372
Bicycle, 328, 387
brake of, 421
front wheel of, 438
Bifilar pendulum, 247
Billiard ball, 283, 431
Bird in cage, 439
Brake, 96, 387, 421, 424, 425
Bridge, bascule, 353
drawbridge, 349

Bridge, suspension, 63, 368
Bridge truss, 367

Bumper jack, 98
Buoyancy, 48

C

Cables, 63, 370

friction of, 99, 376, 377
Camshaft, 381
Cat, 418
Catenary, 66, 370
Center of gravity, of cone, 41

of crank, 120

definition of, 33, 119

funicular diagram of, 77

of sector of circle, 39

of segment of circle, 40

of trapezoid, 38

of triangle, 37
Center of percussion, 247
Center of rotation, 197
Centrifugal force, 211
Centrifugal governor, 193
Centrifugal moment, 216
Centrifugal pendulum, 435
Chain slip off table, 193
Coefficient of friction, 84
Coil spring, 131
Compass, 334
Compound pendulum, 235, 265, 292,

416
Copernicus, Nikolaus, 295
Coriolis, Gaspard Gustave de, 303
Coulomb, Charles Augustin de, 85
Couple, 16, 104, 137
Crank, 114, 120, 227, 358, 384
Crank mechanism, 27, 170, 199, 208,
397, 424

Cremona, Luigi, 58
Cross, 107
Crown wheel, 394
Curved bars, 129, 131

459



460 INDEX

D G
d’Alembert, Jean le Rond, 175 Galileo, 174, 180, 399
principle of, 213, 217 Gears, 30, 354, 386, 395
Dams, 360 Geneva mechanism, 388
da Vinci, Leonardo, 159, 174, 303 Gnome-Rhone engine, 396
Diesel engine, 343 Golf ball, 288
Differential gear, 386, 395 Governor, 193, 308, 404, 436
Differential hoist, 29, 94 Grab bucket, 388
Dissipated energy, 257 Grandma, 418
Drawbridge, 349 Gyroscope, applications of, 326, 438
Dump car, 360 definition of, 323
Dynamometer, 267, 425 theorem of, 324
E H
Hammer, 292
Edgerton, Harold E., 288 Harmonic motion, 159, 183
Efficiency, 88, 260 Hart’s mechanism, 407
Elastic energy, 256 Helical spring, 131
Elevator, 362, 426 Helicopter, 434
Energy, dissipated, 2567 Hinged arch, 24
elastic, 256 Hinged bar, 23
kinetic, 257 Hoist, 350, 365, 366
of plane body, 262 differential, 20, 94
potential, 256 efficiency of, 88
Engine, Diesel, 343 multiple pulley, 145
fiywheel of, 268 Horizon, 320
Gnome-Rhone, 396 Horsepower, 260
Equalizer gear, 30 Hydraulic coupling, 311

Equilibrium, conditions of, 19, 20, 110  godraulic pressure, 46, 51
definition of, 3 ¥ P »
stability of, 152, 153 1

Equinox precession, 332

Expansion bend, Ice cube cracker, 351

Ice tongs, 351
F Impact, 288
Impulse, linear, 270, 289
Inclined plane, 86, 144, 149, 179, 192,
282, 403, 404, 427
Inertia force, 211

Fluid drive, 310
Fluid pressure, 46

on gates, 51
Flywheel, 268 moment of, 215
hydraulie, 311 product of, 216
Force, centrifugal, 211 Instantaneous center of rotation, 197
definition of, 3 J
inertia, 211 -
potential, 257 Jack, bumper, 98
Friction coefficient, 84, 85 screw, 89
of rope on drum, 99 Jerk, 161, 432

Funicular polygon, 59, 71, 369 Jet, 283, 428




INDEX

K

Kepler, 280, 295
Kinetic energy, 257

L

Ladder, 91, 248, 266, 375, 397, 427

Lawn roller, 353

Lazy tongs, 148, 350, 386

Levers, 346

Linkage, three-bar, 201, 209, 356, 409,
427

Locomotive equalizer gear, 30

M

Maltese-cross mechanism, 398
Mass, 176
Maxwell, Clerk, 68
Maxwell-Cremona diagram, 58
Metric units, 177
Mohr’s circle, 223
Moment, bending, 69, 77, 127, 372
centrifugal, 216
of force, 13, 103, 277, 314, 378
of inertia, of bars, 225
definition of, 215
of disks, 226
about parallel axes, 220
polar, 218
of sphere, 228
Momentum, angular, 276, 314
linear, 270
Moon rocket, 287

N

Newton, Sir Isaac, 174, 280, 289
Newton’s laws, 175, 241, 299
Nuteracker, 345, 374

P

Pappus, 357, 359
Parallelogram, of forces, 5

of Watt, 202
Parachutist, 399
Particle, rigid body behaving as, 213
Passamaquoddy Bay, 422
Peaucellier, 395, 407, 426

461

Pelton wheel, 284

Pendulum, bifilar, 247
centrifugal, 435
compound, 235, 265, 292, 416
Schuler, 237
simple, 184, 253, 259
spherical, 186

Percussion, 247

Perpetual motion, 363

Pile driving, 292, 431

Pipe wrench, 95

Planet motion about sun, 279

Planet gears, 390

Pole, of acceleration, 207, 300, 410, 419
velocity, 197, 246, 300

Pole curves, 200

Polygon, funicular, 59, 71, 369

Potential energy, 256

Potential force, 257

Pound, definition of, 3

Precession, 332

Pressure, fluid, 46, 51

Product of inertia, definition of, 216
and Mohr’s circle, 223
and parallel axes, 221
properties of, 238, 320

Projectile, 167, 188, 307

Propeller, 229, 238, 327, 414

Q

Quick-return mechanism, 168
R

Race track, 402
Restitution, 289
Roberval, Gilles de, 147
Rocket, 287, 430
Roll of ship, 329
Rolling wheel, 92, 172, 201, 210, 242,
245, 264, 282

Roman scale, 345
Ropes, 63

friction of, 99
Rotation, center of, 197

fixed-axis, 233

of rigid body, 240

of textbhook, 316

theorems on, 314
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Rotor, 380
balance of, 117
Rube Goldberg, 373

8

Sailboat, 31, 432

Sawhorse, 377

Scales, 345, 352, 354, 385, 409
Schuler pendulum, 237
Scotch crank, 392, 403
Screw (forces), 107, 387
Screw jack, 89

Shear force, 70, 77, 372
Ship’s roll, 329

Sliding ladder (see Ladder)
Space frame, 121, 379, 383
Sperry gyroscopes, 329, 330
Spring, 131, 150, 182
Stability, 152, 153

Stevin, Simon, 49
Suspension bridge, 63, 368
System of units, 177

T

Testing machine, 388
Three-bar linkage (see Linkage, three-
bar)

Thrust bearing, 3756

Tidal power, 422

Tides, 333

Toggle joint, 349

Toledo scale, 355, 409

Trajectory, 167

Transmissibility, 4

Truss, definition of, 52
Maxwell-Cremona diagram for, 58
method of joints for, 56
method of sections for, 52
problems on, 364

INDEX

Turbine, forces on, 327
Pelton, 284
rotor of, 380
ship’s, 423
Turn indicator, 438
Turntable, 281, 309
U
Units, 177
\Z

Varignon, 14, 134, 136

Vehicle, 296

Velocity, angular, 160
definition of, 156
relative, 295

Velocity pole, 197, 246, 300

Velocity vector, 163

Vibratory system, 182

Vinci, Leonardo da, 159, 174, 393

Violin, 341

Virtual work, 151

w

Walschaert valve gear, 408
Waterwheel, 344
Watt, James, and horsepower, 260
parallelogram of, 202
Wedge, 374
Wheel, 92, 172, 201, 210, 242, 245, 264,
282,
Windmill, 423
Wobble plate, 437
Work, by couple, 137
definition of, 133, 250
virtual, 151
Wrench, 95

Yo-yo, 243




